Teaching and learning data structure concepts
via Visual Kinesthetic Pseudocode
with the aid of a constructively aligned app

Ogen Odisho, Mark Aziz, Nasser Giacaman
Department of Electrical and Computer Engineering
The University of Auckland, New Zealand

Abstract—Data Structures is an integral topic for any Com-
puter Science or Software Engineering degree, identified as a
Core Tier-1 topic of the ACM/IEEE Computer Science Curric-
ula. The underlying concepts are inherently abstract, making
them especially difficult to understand for novice programmers.
This paper proposes a cognitively challenging technique to
help students understand the thought process that the learning
outcomes of fundamental data structure units aim to achieve.
The development of this thought process is using a technique
we term Visual Kinesthetic Pseudocode, with the overarching
goal of helping students code without coding, yet providing
the necessary scaffold to guide them in implementing the data
structures with real code. This was implemented in the form of
INTERACTIVEDS, an app for students and teachers to guide the
learning of fundamental data structure concepts. The evaluations
demonstrate that students strongly credited INTERACTIVEDS in
aiding their understanding of concepts and confidence in applying
data structure concepts in practice. The study is also a step
forward in revealing potential threshold concepts pertaining to
data structure modules.

I. INTRODUCTION

The fundamental data structures unit is one of the most
cognitively difficult topics in programming due to its high
level of abstraction [1]. The learning is further exasperated
since it builds on object-oriented programming principles
and pointers — both of which are concepts identified as
troublesome threshold concepts in computer science [2], [3].
While visualization has been attempted in helping students,
they are deemed ineffective unless they cognitively engage
and challenge students [4], [5]. This paper proposes Visual
Kinesthetic Pseudocode (VKP) as an engaging technique to
scaffold students transitioning “from concept to code”.

Programming in general is a difficult subject to learn: it
involves many abstract concepts and students rarely receive
sufficient amounts of personal instruction [1]. The ACM
and IEEE Computer Science Curricula [6] has identified
data structures as one of the most essential topics, with the
recommendation that 12 of the introductory hours dedicated
to it. The issue in learning data structures lies in the high-
level concepts rather than at the low-level programming
technicalities [7]. Such topics are not limited to Computer
Science and Software Engineering; Electrical and Electronics,
Mechatronics, and Computer Systems Engineering are also
examples incorporating CS2 level topics.

Since some of the difficulties associated with learning data
structures is also acknowledged by teachers [1], [3], this
raises some important questions. How can the underlying
concepts of the fundamental data structure unit be taught, and
therefore learnt by students, effectively? How can teachers

ensure that their explanations are correct without inadver-
tent errors that could potentially further confuse students?
Answering these questions requires a careful approach that
is educationally sound, both in terms of motivating students
as well as meeting the correct learning outcomes. Instructors
teaching programming courses seek and welcome scaffolding
tools that support their delivery of such abstract concepts [8].
This scaffolding also plays an essential role for students,
particularly when attempting to implement the concepts with
practical programming exercises.

A driving motivator for this work is that textual pseudocode
lacks engagement and is easily misinterpreted [9]. VKP aims
to reinforce the correct thought processes, which is a precursor
for students understanding how to implement something in
code. Using the ideas of VKP, INTERACTIVEDS has been
implemented without losing sight on delivering the intended
learning outcomes pertaining to data structures. INTERAC-
TIVEDS ensures only programmatically-correct steps may be
executed, with interactions strongly aligned to pseudocode
such that any given action correlates to a “real line of code”.
This serves two purposes:

o Eliminate any inadvertent errors likely to arise when
explaining data structure concepts, especially when the
explanation is attempted in a visual manner.

e Provide a scaffolded learning environment to reduce
ambiguity when transitioning from the concept to imple-
mentation, especially when conceptual explanations tend
to be too abstract in helping students independently apply
the concept in practice.

The rest of this chapter is organized as follows. Educational
foundations guiding this work are overviewed in section II.
Visual Kinesthetic Pseudocode is presented in section III,
before introducing INTERACTIVEDS in section IV. Student
experiences and potential threshold concepts are discussed in
section V before presenting a brief overview of related work
in section VI, then concluding in section VII.

II. BACKGROUND
A. ACM & IEEE CS2013: Fundamental Data Structures unit

The ACM and IEEE Computer Science Curricula (CS2013)
[6] is a guideline for Computer Science and Software En-
gineering undergraduate degree curriculum design. The core
topics are decomposed into Core Tier-1 and Core-Tier 2,
with most of the Core Tier-1 topics covered in introductory
courses. CS2013 identified 165 hours dedicated to Core Tier-
1 topics, 43 of which are dedicated to Software Development

Fundamentals (SDF). Of these 43 hours, 12 are dedicated to
the Fundamentals Data Structures unit. Among others, some
topics in this unit include: (i) Arrays, (ii) Abstract data types
and their implementation, (iii) Linked lists. The unit defines
Learning Outcomes, a couple of selected examples include:

LO#3 Write programs that use each of the following data
structures: arrays, records/structs, strings, linked lists,
stacks, queues, sets, and maps. [Usage]

LO#4 Compare alternative implementations of data struc-
tures with respect to performance. [Assessment]

Each learning outcome is annotated with level of mastery
using a somewhat simplified Bloom’s taxonomy [10]. In
increasing order of mastery, they are Familiarity (awareness
of concept), Usage (apply concept in a practical manner), and
Assessment (understand alternative options and justify their
selection). This presents a challenge for novice programmers:
the expected level of mastery of the learning outcomes is
notably high. As a Core Tier-1 unit, many students may still
be trying to familiarize themselves with the programming
language technicalities. But before students can code these
data structures to demonstrate usage mastery, an obvious pre-
requisite is a strong understanding in the underlying concept.

B. INTERACTIVEDS educational theories

1) Levels of thinking about teaching: The primary design
decision for INTERACTIVEDS was to promote an active learn-
ing approach. This is motivated by the three levels of thinking
about teaching that an instructor may take in teaching [11]:

1) What the student is: the teacher believes responsibility
to learn lies solely with students, and little can be done
to motivate them.

2) What the feacher does: the teacher attempts to interest
students by focusing on the way material is presented.

3) What the student does: the teacher recognizes that learn-
ing comes from student engagement.

To foster learning, focus needs to be on what the student
does [12]. Here, students learn by actively applying older
knowledge as they encounter new knowledge [13]. Such active
learning is vital for long-term retention, in which students
make meaning of the new information by relating it to existing
knowledge [14]. INTERACTIVEDS promotes this, as it comes
in the form of activities to engage students, but is still also
useful as a teaching aid for the instructor when explaining
concepts in class.

2) Constructive Alignment: Engagement is not the only
ingredient required for learning; an engaged student may not
necessarily be learning the intended outcomes. Constructive
alignment [15]. Rather than focusing on topics the teacher
should teach, constructive alignment first focuses on the In-
tended Learning Outcomes (ILO): what students should learn
and to what extent. In the case of the data structures topic,
the learning outcomes are provided by the CS2013 learning
outcomes (as discussed in section II-A). The second step of
constructive alignment involves the identification of Activities
that engage students in order to meet those ILO. LO#3 states
that students should be able to “write programs that use
the data structures”. While an obvious activity might entail
a lab exercise requiring students to code and use the data

Intermediate Novice

Visual kinesthtic
pseudocode

[Textual pseudocode]

Expert

Mastery achieved:
Familiarity

Mastery achieved:
Usage

[LO#3: Write programs using the data structures }

Figure 1. Support steps to achieve CS2013 Learning Outcome #3. VKP
provides a stepping stone for novice programmers to achieve Familiarity,
which is a prerequisite before students achieve the Usage mastery level.

structure, this is likely to be a daunting task for weaker
students. INTERACTIVEDS is built on activities that serve
as stepping stones. Finally, Assessment Tasks are required
to provide feedback informing students about their learning
progress. In the context of INTERACTIVEDS, this is imple-
mented with randomly generated exercises to manipulate the
data structures. This process of accomplishing sub-goals (that
lead to larger goals) helps promote student self-motivation,
ultimately nurturing self-efficacy [16], [17].

III. VISUAL KINESTHETIC PSEUDOCODE

This section introduces Visual Kinesthetic Pseudocode
(VKP) as a strategy to scaffold novice programming students
when studying abstract and concept-rich topics that require
a high level of mastery. The goal is to provide a stepping
stone in understanding the concept (i.e. the thought process),
as this is a prerequisite to the actual coding (i.e. practical
application of the concepts). This is illustrated in Figure 1,
showing the support steps a student requires before being
able to apply to real programming exercises (such as LO#3).
Although the intention of textual pseudocode is to make it
easier to understand real code by expressing it informally, it
still possesses some problems. Novice programming students
find pseudocode easy to misinterpret, and it does little in
helping them detect their misunderstanding due to the lack
of feedback it provides [9].

Applying VKP is not limited to learning outcomes that in-
corporate code development; VKP can also provide a stepping
stone when targeting a high level of conceptual understanding,
such as appreciating the performance consequences of alter-
native data structure implementations (e.g. LO#4). The kines-
thetic aspect of VKP would allow students to “experience” the
performance associated with different implementations. The
important components of the VKP strategy are:

« Visual: This recognizes that code (whether it be real code
or pseudocode) can be daunting for novice programmers,
and the peculiarities surrounding each programming lan-
guage’s syntax only further inhibits understanding of the
underlying concepts. While textual pseudocode has the
benefit of being programming language-neutral, visual-
izations help students develop mental models [5].

« Kinesthetic: Visualizations alone are insufficient in help-
ing students learn; for them to be effective, they need to
cognitively engage and challenge students [4], [5]. This
component therefore promotes active learning.

Textual pseudocode: adding a new value to the front of a singly linked list

begin add_to_start (value)

(QD create a new node storing value;
CZ) set the new node's next reference to the current head node;

®
€

nd

set the new node as the head node;

‘ Visual kinesthetic pseudocode: adding a new value to the front of a singly linked list ‘

N\ D

‘/‘\l/' head N ‘/‘\%)
Co B ED
-

| newNode
N

head

) \ newNode
N

I

_ newNode
N

Figure 2. An example incorporating visual and kinesthetic considerations to produce a VKP. The careful alignment to the textual pseudocode ensures the
interactive visualization meets the intended learning outcome. While the VKP is more engaging and less daunting for novice programmers, the direct alignment
will still allow the automatic generation of textual pseudocode from the corresponding actions.

R gn
NC R B

[1 Bt 2 Bt < Bug o)

=@

P

1)

Figure 3. An activity using VKP to add a new node to the front of a singly
linked list. Each kinesthetic action is directly related to corresponding code
(shown at the bottom). The “sliding” effect (e.g. Step 2 in Figure 2) is shown
in (a) to (b). This aids the understanding of pointers, by avoiding the incorrect
approach of attempting to directly access nodes.

« Pseudocode: For engagement to contribute to learning, it
needs to be closely aligned to the ILO. The Fundamental
Data Structures unit requires a high level of mastery
that requires students to apply the thought process in
manipulating data structures. This process, if documented
as pseudocode, is a helpful precursor to writing “the real
code” [18]. The difference with VKP is that pseudocode
is constructed by students visually and kinesthetically.

Aligning visualization and kinesthetics to pseudocode: Fig-
ure 2 illustrates traditional textual pseudocode for a learning
activity to manipulate a data structure, in this case adding
a new value to the front of a singly linked list. This exam-
ple illustrates the potential misinterpretation that can result
with using textual pseudocode; does line 3 mean “head =
newNode”, or does it mean “newNode = head”? Due to
the informal language of pseudocode, it is easy to see how
misinterpretation might creep in. Below the textual pseu-
docode is the same learning activity, this time infused with
visual and kinesthetic components to produce the VKP. Here,
misinterpretation has been eliminated since each kinesthetic
action is intentionally designed to be mapped to real code.

(a) The plan: update head (b) “Expectation failure”

Figure 4. The learner’s goal is to add a new node to the front of the singly
linked list. The learner’s first step in the plan, making nodeToAdd as the
head, immediately results in an expectation failure.

IV. INTERACTIVEDS

The design recommendations discussed in the previous
sections have been implemented in INTERACTIVEDS', in the
form of an app freely available for both students and teachers.
Figure 3 illustrates INTERACTIVEDS screenshots in correctly
adding to the front of a singly linked list. Each step in the VKP
interaction (outlined in Figure 2) directly maps to pseudocode.

Learning with expectation failure: To promote deep learn-
ing, students need to have their existing mental models
challenged [19]. Long term understanding is aided with the
intellectual stimulation of grappling with a problem. As an
essential part of this learning process, INTERACTIVEDS cap-
italizes on the concept of “expectation failure” [20]. This is
where the learner has a goal, follows a plan, but fails when the
result does not meet their expectation. This is best illustrated
with Figure 4, where the user’s goal is to add a node to the
front of a singly linked list. It may seem simple enough, but
this particular activity catches out many users when attempting
it for the first time. When the wrong action is taken, the linked
list loses reference to the first 3 elements. INTERACTIVEDS
recognizes that the data structure is in an incorrect state, so it
immediately highlights the lost nodes and vibrates to inform
the user (Figure 4(b)).

Reducing misconceptions: A challenge in learning a con-
ceptual topic is that, if the explanation is too abstract (in the
aim of focusing on the conceptual explanation), it does little in
helping the learner apply the concepts. Furthermore, visually
explaining concepts may lead to misconceptions when the
visualizations do not correctly reflect the intended and correct

'www.ece.auckland.ac.nz/~ngia003/dsapp

www.ece.auckland.ac.nz/~ngia003/dsapp

(a) Traversing to middle (b) Updating nodes

Figure 5. Deleting the middle of a doubly linked list involves navigating to
the respective node using a probe pointer, ensuring that users cannot directly
access it even though it is visually “there”.

meaning. For example, when removing a node from the middle
of a linked list, it may be tempting to “directly point” to the
middle node. However, just because “we can see it” in the
visualization, it does not mean we can actually access it yet.
The kinesthetic interactions of INTERACTIVEDS help learners
understand they cannot manipulate or directly reference nodes
until they access them by traversing the data structure; Figure
5 shows two steps of this activity, here the use of a probe
pointer to navigate to the middle of the doubly linked list.
If a teacher was explaining this activity without reinforcing
these rules (e.g. by using a freehand sketch), students might
be misled into believing operations on the middle of a linked
list are constant-time operations.

Another added challenge in learning how to manipulate data
structures is its heavy use of pointers, which is a threshold
concept in itself that novice programmers struggle with [2],
[3]. Consider again Figures 3(a) and 3(b). In setting the value
of nodeToAdd->next, the user learns that they cannot
directly point to Node 1; instead, the value of head is
used (Figure 3(a)), which effectively causes it to point to the
node (hence the “sliding” effect that results in Figure 3(b)).
INTERACTIVEDS ensures that the correct intention of using
pointers is respected, avoiding misunderstanding of pointers.

V. EVALUATION

INTERACTIVEDS was offered to a CS2 course consisting of
250 students. The course is compulsory and includes Electrical
and Electronic, Mechatronics, and Computer Systems Engi-
neering students. The data structures unit spanned two teaching
weeks, focusing on the core learning outcomes presented in
section II-A. The logs in this section were gathered from the
Android and WebPlayer platforms, from 159 and 38 unique
devices respectively. At the end of the data structures unit,
students were asked to complete an anonymous questionnaire
delivered in-app, where 49 responses were received.

Limitations: It was an informed design decision to encour-
age student uptake by ensuring privacy was respected. Since
data gathered was anonymous, this meant that the question-
naire and activity logs could not be correlated to particular
individuals, let alone to course assessments. Although indi-
viduals could not be identified, it was possible to distinguish
usages on different devices (based on unique device ID). It
is therefore possible that a student may have installed the
app on multiple devices (e.g. a tablet and a smartphone), or
used the WebPlayer from multiple browsers; in such cases,
this study treats different devices as different users. Only
logs coinciding with the delivery of the data structure module
are included, maximizing the likelihood that they were from

students genuinely enrolled in the course. Finally, receiving
logs was at the user’s discretion: users are allowed to opt out
of sending logs by disabling this from within the app settings.
While the app may have been used more than is portrayed by
the logs, but it is not possible to determine how many users
disabled sending anonymous data.

A. Student perceptions

Table I summarizes anonymous responses (using the 5-point
Likert scale) from the in-app questionnaire. The questionnaire
was visible only to users that completed at least half the
activities (to ensure only genuine users completed it). The
app most effectively developed student confidence for Array,
Vector and Linked List activities (Q1-Q3). These activities
were the most cognitively challenging activities, requiring
users to interact using the VKP technique proposed earlier.
This is best illustrated with the following student comment,
emphasizing learning through expectation failure:

“I found this easy to learn because I was able to
interact with the data structure, make mistakes, then
see how the order of doing things played a part.”
The other activities were less cognitively challenging, espe-
cially the Queue and Stack activities since the aim of their
semi-automated interaction was to emphasize the code-reuse
of other data structures (Q5). Many students commented on the
lack of interactivity for these activities, therefore confirming
mobile app activities need to be cognitively challenging:
“The fact they were only animations as opposed to
exercises meant less thinking was required.”
Q6-Q10 show that students generally agreed that data structure
concepts were effectively conveyed with INTERACTIVEDS.
The CS2013 Learning Outcomes however require a much
deeper level of understanding; in this regards, Q12 and Q13
show that INTERACTIVEDS helped provide some scaffolding
for students to bridge concepts with coding activities. This is
emphasized with Q14, where a fair portion of students actually
wanted to see more code. The app was useful in guiding
students towards implementing with code:
“Being visually able to work through linking forward
and behind, then deleting the nodes, really helped
concrete the process required to then implement it
into my lab and assignment. Also being able to see
pseudocode after completing the task is a real help.”
Some students hinted they wanted to see more engaging
and challenging exercises (Q15), but otherwise had a highly
positive attitude to the educational benefits of using mobile
apps in their learning (Q16-Q19). The combination of visual
and kinesthetic pseudocode was a powerful combination:
“The use of visual diagrams with code provided after
successful completion showed what was going on
with each step. Drag and drop feature made it clear
what steps I was doing to get my intended result.”

B. Logged usage

During the two week data structure module, over 5600
activity logs were recorded from the Android and WebPlayer
platforms. Table II shows the time distribution of all activ-
ity attempts, to help convey the granularity of engagement.

[Question [SATAJNT]DT]SD|
Self-efficacy of particular topics
Q1. The app gave me confidence understanding how Arrays and Vectors work 26 | 20 3 0 0
Q2. The app gave me confidence manipulating a Singly Linked List 30 16 2 1 0
Q3. The app gave me confidence manipulating a Doubly Linked List 21 21 6 1 0
Q4. The app gave me confidence understanding Circular Arrays 21 16 | 10 2 0
Q5. The app helped me understand how encapsulation helps us implement Queues and Stacks 9 27 | 11 2 0
Effectiveness in aiding the understanding of data structure concepts
Q6. The app helped me understand data structure concepts 25 | 23 1 0 1
Q7. The visual aspects of the app helped me understand underlying concepts of data structures 29 17 2 0 1
Q8. The app helped me understand the underlying steps of data structure manipulation without being daunted by code | 29 15 3 2 0
Q9. The app helped me to easily follow lecturer’s teaching flow during the class 16 | 25 7 1 0
Q10. The activities in the app were aligned well with the Learning Outcomes of the data structures module 17 | 29 3 0 0
Scaffolding towards practical implementation
QI11. The app helped me to study the data structures module of the course more systematically 12 | 25] 10 2 0
Q12. The app helped me prepare for the data structure laboratory exercises 18 | 24 5 2 0
Q13. The app helped give me confidence in the underlying concepts so I can go implement them in code 24 | 23 2 0 0
Q14. I really liked that there was not much code shown in the app, with focus being on the data structures concepts 15 12 7 14 1
App interaction and overall impression
Q15. I found the random exercise testing mode engaging and challenging 14 | 22 | 13 0 0
Q16. I enjoyed the drag & drop aspects of the app 23 | 22 3 0 1
Q17. T wish similar educational mobile apps would be used in other programming courses 25 | 21 2 1 0
Q18. I found that using a mobile phone app to study course material outside of class time was convenient 25 17 6 1 0
Q19. Should a friend be studying a similar data structures course, I would definitely recommend the app to them 28 | 21 0 0 0
Table T
SELECTED QUESTIONS FROM 49 STUDENTS IN THE ANONYMOUS INTERACTIVEDS QUESTIONNAIRE
[Time band [Completed | Attempted | % Completed | Front Middle End

0-2 seconds 0 619 0% + [- + [- + [-

3.5 seconds 30 301 7% Proportion of attempts successfully completed

6-10 seconds 317 350 39% SIL 22386/232 942143;/53 11253/392 63;/93:731 17422/;‘;05 10467/;25

‘0 0 0 0 0 0

T e e o bk DLL |_55/136 | 55/T47 | 38/85 | 36/129 | S6/115 | 30/67

31-59 seconds 541 1298 0% 40% 37% 5% 28% 49% 8%

1-10 minutes 433 1097 40% COMPLETION RATES IEEIiIELED LIST OPERATIONS

10+ minutes 15 76 20%

[Total [2068 5613 [37% |
Table I

DISTRIBUTION OF TIME ON INTERACTIVEDS ACTIVITIES

For each given time band, the table shows the proportion
of attempted activities that were successfully completed (as
opposed to resetting the activity when a mistake is made, or
the user exiting the activity without completing it). The app
was purposely designed such that activities were digestible,
in the aims of encouraging engagement by having simple
activities that are quick to complete. In this trial, 78% of
the activities successfully completed were accomplished in
under a minute. It is assumed that completions exceeding 1
minute were probably students coding an assignment or lab
exercise, and were using the app to guide their programming
(as opposed to struggling to complete the activity). It is worth
noting that there is no extrinsic incentive to complete activities
(i.e. gamification); there is no visible scoring system informing
users on the number of completed or abandoned activities.

Table III more specifically looks at the completion rates for
the linked list activity attempts, but only includes attempts at
least 5 seconds long (to filter out probable inadvertent attempts
when a user immediately exits an activity). A total of 2438
attempts were made for Singly Linked List (SLL) operations,
while only 679 attempts were made for Doubly Linked List
(DLL) operations. For SSL, the completion rates suggest that
operations in the middle of the SLL are most challenging,
while operations at the end of the SLL are least challenging.

It may come as a surprise that the successful completion
rates of the SLL operations are higher than that of the DLL
operations, but this is likely attributable to predominantly
stronger students attempting DLL activities. Removing from
the middle of a DLL is clearly the most challenging operation,
while operations on the end of the DLL least challenging.

For a user having successfully completed a given linked
list activity, we next investigate the total number of overall
app activities completed. This aims to understand if the user’s
general engagement is an attribute that contributes to them
completing the more challenging activities. Building on the
assumption made earlier that DLL activities are predominantly
targeted by stronger users, we distinguish between two groups
of users: those that have successfully completed half of DLL
activities (namely 3+ of the 6), versus those that have not.
Figure 6 shows a significant distinction of general engagement
in completing activities between the two groups. The value
above each whisker is the total number of students in that
group that successfully completed the respective linked list
operation, while the y-axis shows the group’s distribution
of overall app engagement. This figure helps explain, for
example, why the DLL completion rates are higher than the
SLL rates for operating in the middle of the linked list; it
is due to the DLL being predominantly targeted by the more
engaged (and presumably stronger) users.

Total app activities completed, having completed particular linked list activities

Q0

k=4
@
g eof]
4 Students that have sudcessfully completed at least 3 DLL activities
@
g- 70 @» | Students that have completed less than 3 DLL|activities b
o
k]
g 60 | B
3 68 41 35 19 52 27 15 7
N M > - : -
S 50 | B
?
@
8
S 40 [|]
E | | R |
@ B
2 | | | | | | | | B
Z 30 [B B B
S
®
Q
= 20 i 4 2]
s 2
© 10 | | :
0 L J L
SLL(+F) (-F) (+*M) (M) (+E) (-E) DLL(+F) (-F) (+M) (-M) (+E) (-E)

Linked List operation

Figure 6. General engagement of completing INTERACTIVEDS activities,
based on having completed a particular linked list activity. The users were
grouped into two categories: those that managed to complete at least 3 DLL
activities, versus those that did not.

VI. RELATED WORK

Helping students learn programming concepts with the help
of visualization is not new [21], and is best known in popular
visual programming tools such as Alice [22] and Scratch
[23]. Early studies have investigated the effects of algorithm
and program visualization and have concluded that cognitive
engagement is the missing element desired to achieve learning
[4], [5]. By focusing specifically on data structures, and
acknowledging the wide variation of philosophy on teaching
data structure concepts [24], this paper proposes VKP to aid
learning. Despite these teaching variations, the underlying
learning outcomes of CS2013 [6] need to be respected. A
combination of competitive programming and game develop-
ment incorporated into course assessments has been used in
motivating students in a data structures course [25] by com-
paring the code they develop against the instructor and other
students. Similarly, the JDSL Visualizer [26] is a testing tool
for students to see the effect of their developed data structures.
However, our focus in this paper is on the prerequisite step:
the scaffolding students need in order to absorb data structure
concepts since many struggle with the programming strategy.

VII. CONCLUSIONS

Learning a conceptual programming topic, such as the Fun-
damental Data Structures unit in the ACM & IEEE Computer
Science Curricula, presents multiple challenges. First, students
need to master the thought process underpinning the concepts.
While visualizations may first appear as a promising aid,
engagement with the visualization is essential in cognitively
challenging the learner. The second challenge is the transition,
from having firstly understood the concept, to developing a
mastery level demonstrating an ability to apply the concepts
in practice. Visual Kinesthetic Pseudocode has been proposed
as a technique to address these concerns while also reducing
potential confusion arising from inadvertently wrong expla-
nations. The implementation, in the form of an app called
INTERACTIVEDS, has demonstrated a promising approach in

scaffolding novice programmers to learn an abstract topic such
as data structures. The activity logs also identified the most
challenging operations in manipulating linked lists.

REFERENCES

[1] E. Lahtinen, K. Ala-Mutka, and H.-M. Jérvinen, “A study of the
difficulties of novice programmers,” SIGCSE Bull., vol. 37, pp. 14-18,
June 2005.

[2] J. Boustedt, A. Eckerdal, R. McCartney, J. E. Mostrom, M. Ratcliffe,
K. Sanders, and C. Zander, “Threshold concepts in Computer Science:
do they exist and are they useful?,” ACM SIGCSE Bulletin, vol. 39,
no. 1, pp. 504-508, 2007.

[3] I. Milne and G. Rowe, “Difficulties in learning and teaching
programming—views of students and tutors,” Education and Information
technologies, vol. 7, no. 1, pp. 55-66, 2002.

[4] C. D. Hundhausen, S. A. Douglas, and J. T. Stasko, “A meta-study of
algorithm visualization effectiveness,” Journal of Visual Languages &
Computing, vol. 13, no. 3, pp. 259-290, 2002.

[5] M. D. Byrne, R. Catrambone, and J. T. Stasko, “Evaluating animations as
student aids in learning computer algorithms,” Computers & education,
vol. 33, no. 4, pp. 253-278, 1999.

[6] ACM and IEEE, Computer Science Curricula 2013: Curriculum Guide-
lines for Undergraduate Degree Programs in Computer Science, 2013.

[71 M. Butler and M. Morgan, “Learning challenges faced by novice
programming students studying high level and low feedback concepts,”
in ascilite Singapore 2007 ICT: Providing Choices for Learners and
Learning, pp. 99-107, Nanyang Technological University, 2007.

[8] N. B. Dale, “Most difficult topics in CS1: results of an online survey of
educators,” ACM SIGCSE Bulletin, vol. 38, no. 2, pp. 49-53, 2006.

[9] T. Hiibscher-Younger and N. H. Narayanan, “Constructive and collabora-
tive learning of algorithms,” in ACM SIGCSE Bulletin, vol. 35, pp. 6-10,
ACM, 2003.

[10] L. W. Anderson and D. R. Krathwohl, A Taxonomy for Learning, Teach-
ing, and Assessing: A Revision of Bloom’s Taxonomy of Educational
Objectives. Pearson, 2000.

[11] J. Biggs and C. Tang, Teaching for quality learning at university. Open
university press, 3rd ed., 2007.

[12] J. Biggs, “What the student does: teaching for enhanced learning,”
Higher education research & development, vol. 18, no. 1, pp. 57-75,
1999.

[13] R. E. Mayer, “The psychology of how novices learn computer program-
ming,” ACM Comput. Surv., vol. 13, pp. 121-141, Mar. 1981.

[14] E. F. Barkley, Student Engagement Techniques: A Handbook for College
Faculty. Jossey-Bass, 2009.

[15] J. Biggs, “Enhancing teaching through constructive alignment,” Higher
Education, vol. 32, no. 3, pp. 347-364, 1996.

[16] A. Bandura and D. H. Schunk, “Cultivating competence, self-efficacy,
and intrinsic interest through proximal self-motivation,” Journal of
personality and social psychology, vol. 41, no. 3, pp. 586-598, 1981.

[17] B. J. Zimmerman, “Self-efficacy: An essential motive to learn,” Con-
temporary educational psychology, vol. 25, no. 1, pp. 82-91, 2000.

[18] G. G. Roy, “Designing and explaining programs with a literate pseu-
docode,” Journal on Educational Resources in Computing (JERIC),
vol. 6, no. 1, p. 1, 2006.

[19] K. Bain, What the best college teachers do. Harvard University Press,
2011.

[20] R. C. Schank, T. R. Berman, and K. A. Macpherson, “Learning by
doing,” Instructional-design theories and models: A new paradigm of
instructional theory, vol. 2, pp. 161-181, 1999.

[21] M. Ben-Ari, R. Bednarik, R. B.-B. Levy, G. Ebel, A. Moreno, N. Myller,
and E. Sutinen, “A decade of research and development on program
animation: The Jeliot experience,” Journal of Visual Languages &
Computing, vol. 22, no. 5, pp. 375-384, 2011.

[22] W. P. Dann, S. Cooper, and R. Pausch, Learning to Program with Alice.
Prentice Hall Press, 2011.

[23] M. Resnick, J. Maloney, A. Monroy-Herndndez, N. Rusk, E. Eastmond,
K. Brennan, A. Millner, E. Rosenbaum, J. Silver, B. Silverman, et al.,
“Scratch: programming for all,” Communications of the ACM, vol. 52,
no. 11, pp. 60-67, 2009.

[24] R. Lister, I. Box, B. Morrison, J. Tenenberg, and D. S. Westbrook,
“The dimensions of variation in the teaching of data structures,” in ACM
SIGCSE Bulletin, vol. 36, pp. 92-96, ACM, 2004.

[25] R. Lawrence, “Teaching data structures using competitive games,”
Education, IEEE Transactions on, vol. 47, no. 4, pp. 459—466, 2004.

[26] R. S. Baker, M. Boilen, M. T. Goodrich, R. Tamassia, and B. A. Stibel,
“Testers and visualizers for teaching data structures,” in ACM SIGCSE
Bulletin, vol. 31, pp. 261-265, ACM, 1999.

	Introduction
	Background
	ACM & IEEE CS2013: Fundamental Data Structures unit
	InteractiveDS educational theories
	Levels of thinking about teaching
	Constructive Alignment

	Visual Kinesthetic Pseudocode
	InteractiveDS
	Evaluation
	Student perceptions
	Logged usage

	Related work
	Conclusions
	References

