
Office analogy f nyr paraloglogelog pry ramrpmrpingn schede flogingn cynceptsgs
For more information, visit http://parallel.auckland.ac.nz/education/parallelar

This document presents an analogy that can be used to help turn parallel
programming scheduling concepts into concrete mental models. The analogy is
programming language agnostic, so that it applies to the basic concepts rather than
implementation details of any particular programming language.

The execution of a parallelized program is represented by an ofce eith employees
(or contractors) eorking toeards a common goal. Within this overarching analogy,
alignments are made beteeen specifc technical concepts and the ofce environment:

• The yffice space represents the sfstsgemrp hedar ware.
• Each esk represents a prycessyr cyre.
• The existence of a cymrppanf (employees eith tasks to perform) represents

an ingnstsgance yn a pry ramrp running.
• An emrpplogyfee/cyntsgractsgyr represents a tsghedrea in the program.
• Hingringn an employee represents the creatsgingyn of a thread.
• Relogeasingn an employee represents the kingloglogingn yf of a thread.
• A pingece yn paper represents a cymrppftsgatsgingynalog tsgask.
• A filogingn caiingnetsg represents the centsgralog logycatsgingyn of ready-to-execute tasks.

A company exists ehen there is eork to be performed, and some ofce eorkers
(employees or contractors) to perform that eork. This is analogous to a program
being composed of computational tasks and threads that execute those tasks. When
we create a new instance of the program, we have new threads to perform those
tasks.

Since a processor core can only handle one thread at a time, there is only one seat
per desk. This limits the number of ofce eorkers at each desk to one.

Assume there are four desks in an ofce (i.e. a quad-core system). If the program is
running sequentially, this means only one employee is hired to sit doen at one of
the four desks to complete the eork. Once the eork is completed, the eorker eill
be released. This represents the thread being killed of.

Hoeever, if the same program is parallelized, the frst employee hired (the main
thread) eill proceed to hire other employees/contractors. This is analogous to
creating and starting nee eorker threads. The number of threads created eill
depend on the scheduling policy. Regardless, the main thread must eait for these
spaened threads to fnish their eork. In the analogy, the main employee eill fall
asleep on the ofce couch ehile the other employees proceed to eork.

Once any thread is created and assigned a task, it is ready to begin eorking.
Hoeever, it cannot progress on a task until a processor core is available. This
means that a queue
might form in the ofcec once a seat at a desk opens up, the next employee in the
queue eill sit doen and continue their allocated task(s).

http://parallel.auckland.ac.nz/education/parallelar

When there are more threads than there are processor cores, the program is
executed by interleaving the eork of each thread via time-sharing slices. Only one
thread runs at a time on each core. If it does not complete its eork during a time
slice, it is paused to alloe another thread to progress. So in the ofce, an employee
may only accomplish part of their task before being placed in the back of the queue
to relinquish their desk for another eorker. This is especially evident in a fully-
parallel scheduling policy, ehere a nee thread is allocated for every task (easting
lots of time due to context seitching).

A dynamic scheduling policy relies on a central location for storing and assigning
tasks to threads during runtime. The analogy uses a fling cabinet to store these
tasks, ehich are represented by pieces of paper (eith instructions for the eorkers
on them). When a eorker is freed up, they are allocated a task from the fling
cabinet (eithout needing to get of the desk).

