
Suggested workfow or PrPllelAR fPshcPrds
For more information, visit http://parallel.auckland.ac.nz/education/parallelar

This document recommends a workfow to get started using the PrPllelAR fashcards.

1. Overview

Assume there are four processor cores in the system (i.e. a quad-core processor). The
general workfow involves selecting one of the Scheduling Policy fashcards, and one of
the Nature of Workload fashcards. aased on the coniguration, think of the following:

• How long will it take to complete all the tasks? [Total time in seconds]
• What do you think will be the utilization of each processor core? [0-100%]
• Relative to the number of tasks and their sizes, is there a large amount of

overhead? When is this overhead present? What about context switching?
• Is the workload balanced fairly evenly among the worker threads?

2. NPture o WorkloPd

There are three types of computational workloads:
• IdenticPl (CoPrse-grPined)

◦ There are a total of 8 tPsks.
◦ Each task is identical, and each task takes 4 seconds to complete.

• IdenticPl (Fine-grPined)
◦ There are a total of 40 tPsks.
◦ Each task is identical, and each task takes 1 second to complete.

• Mixed
◦ There are a total of 24 tPsks.
◦ There is a mixture of three types of tasks. Some take 1 second, some take 3 seconds,

and some take 4 seconds to complete. They are not ordered in any particular way.
The number of circles on the fashcards corresponds to the number of computational
tasks in the program.

Select Nature of Workload:
 ● Identical (Coarse-grained)
 ● Identical (Fine-grained)
 ● Mixed

Select Scheduling Policy:
 ● Sequential
 ● Fully Parallel
 ● Static
 ● Dynamic

http://parallel.auckland.ac.nz/education/parallelar

3. Scheduling olicy

There are four types of scheduling policies:
• SequentiPl

◦ There is only one thread (the main thread) that executes all the tasks.
• Fully PrPllel

◦ A new thread is created and assigned to each and every task.
◦ The number of threads matches the total number of tasks.

• StPtic
◦ There is one thread created per processor core (similar to Dynamic). The total

number of threads is therefore four (quad-core system).
◦ The main thread assigns an equal number of tasks to each thread. Only once

the tasks have all been assigned, will the threads begin (i.e. static schedule).
• DynPmic

◦ There is one thread created per processor core (similar to Static). The total
number of threads is therefore four (quad-core system).

◦ Unlike Static, the tasks are not allocated upfront. Instead, tasks are placed in a
central location and each thread grabs a task when it is free. Once it
completes that task, it returns to the central location and grabs another task.

4. SPmple workfow, prompt questions, lePrning outcomes
1. To get the base performance for coarse-grained computations, start by

combining the SequentiPl and IdenticPl (CoPrse-grPined) fashcards.
(a) How much overall time do you think it will take to complete all tasks?
(b) What do you think the core utilization will be? Estimate a numerical value for

the utilization of each core.
2. Now replace SequentiPl with Fully PrPllel to see the impact of parallelization.

(a) Do you think there will be an improvement in the overall time? How much?
(b) Compare each core utilization in this round compared to the previous round.
(c) Learning outcome: appreciate the potential of parallelization.

3. To get a base performance for ine-grained computations, select the SequentiPl
and IdenticPl (Fine-grPined) fashcards.
(a) How much overall time do you think it will take to complete all tasks?
(b) What do you think the utilization will be for each core?

4. Now replace SequentiPl with Fully PrPllel, keeping IdenticPl (Fine-grPined).
(a) How much overall time do you think it will take to complete all tasks?
(b) How does this compare to the parallelization of the IdenticPl (CoPrse-

grPined) computations that we saw in steps 1 and 2?
(c) Compare each core utilization in this round compared to the previous rounds.

(d) Is the core utilization here more or less than when we used Fully PrPllel
with IdenticPl (CoPrse-grPined)?

(e) Learning outcome: appreciate the overhead of creating and scheduling a large
number of small tasks. With an excessive number of threads, the system may
struggle with context switching on the limited number of cores.

5. Now replace Fully PrPllel with StPtic, keeping IdenticPl (Fine-grPined).
(a) Do you think there will be an improvement in the overall time? How much?
(b) Compare each core utilization in this round compared to the previous rounds.
(c) Why is there a change in overall time and overall core utilization?
(d) Learning outcome: appreciate the value of reusing threads. ay statically

assigning tasks to threads upfront, this improves the core utilization (less
overhead at runtime). This is important for ine-grained computations.

6. To get a base performance for mixed computations, select the SequentiPl and
Mixed fashcards.
(a) How much overall time do you think it will take to complete all tasks?
(b) What do you think the utilization will be for each core?

7. Now replace SequentiPl with StPtic, keeping Mixed.
(a) How much overall time do you think it will take to complete all tasks? Is there

a worst-case or best-case scenario? Although each thread will be allocated the
same number of tasks, you don’t know exactly how the tasks are distributed.

(b) Will all the threads inish at the same time? How does the performance of
StPtic scheduling difer for Mixed versus IdenticPl (Fine-grPined) tasks?

(c) Learning outcome: while static scheduling worked well when the tasks are
identical, this does not work well for when the workload distribution is not
balanced due to tasks having varying levels of computation.

8. Now replace StPtic with DynPmic, keeping Mixed.
(a) Do you think there will be an improvement in the overall time?
(b) Compare each core utilization in this round compared to the previous round.
(c) Why is there a change in overall time and overall core utilization?
(d) Learning outcome: appreciate the value of dynamically allocating tasks at

runtime for unknown/unbalanced tasks. Although the core utilization might
be sacriiced due to the overhead of runtime scheduling, this still results in an
overall better-balanced workload.

9. There is a total of 12 diferent possible combinations to explore!

