
1

Learning Object-Oriented Programming Concepts
Through Visual Analogies

Victor Lian, Elliot Varoy, and Nasser Giacaman

Abstract—Object-oriented programming (OOP) is a widely
used programming paradigm in modern software industry. This
makes it an essential skill for students in many disciplines to
learn. However, OOP is known to be challenging to learn and
teach due to its abstract nature. Studies have shown that students
often face difficulties and develop misconceptions in multiple
aspects when learning OOP. This paper presents a systematic
way of developing a teaching tool that uses a combination
of visualization and analogies to help students overcome these
barriers and understand the OOP concepts better. To ensure the
tool would have pedagogical value and novelty, we first reviewed
the educational theories on using analogies and visualization, as
well as numerous existing tools. A set of activities in the form of
code snippets were then designed to target these misconceptions
and difficulties, along with a set of analogies and their interaction
mechanisms that mapped to the OOP concepts. A teaching tool
was then developed based on those designs and evaluated with
engineering students in a CS2 course (n = 253). The results
and our analysis show that a statistically significant improve-
ment was achieved in student understanding and confidence
through interaction with VOOPA exercises. Similar gains were
also observed using more traditional methods. No statistically
significant positive difference in understanding and confidence
can be attributed to use of VOOPA through the current study.

I. INTRODUCTION

OBJECT-ORIENTED programming (OOP) is a widely
used programming paradigm in modern software in-

dustry [1]–[3]. Because of its popularity, it has become a
fundamental part of software development, and is listed as
a core topic to be covered in any computing curriculum [4].
However, OOP was found to be difficult to learn and teach.
Standard programming languages are textual based and have a
lot of syntactical complexities that distract students from un-
derstanding the underlying OOP concepts [2], [5]. The abstract
nature of the concepts also means that students easily develop
misconceptions around OOP [2], [5]–[8]. Given that students
continue to face common difficulties, this indicates a need to
investigate further how OOP learning can be facilitated.

The integration of technology with teaching provides more
opportunities for the development of interactive and engaging
learning methods. For example, some existing software tools
utilize the power of visualization to help students [9]–[12],
with successful teaching been carried out using those tools [1],
[13], [14]. Their success is closely related to the difficulties
students faced. For example, students often find visualizing
the states of an OOP program difficult [1], so many tools try

The authors are with the Department of Electrical, Computer, and
Software Engineering, The University of Auckland, Auckland 1010, New
Zealand (e-mail: vlia679@aucklanduni.ac.nz; evar872@aucklanduni.ac.nz;
n.giacaman@auckland.ac.nz).

to visually present state transitions of an OOP program. Some
tools work like an advanced IDE which allows students to
write a program visually through a graphical user interface
[15]. This helps students manage the syntactical difficulties of
general purpose programming languages like Java and C++.

Studies have shown that visualization is great for learning
abstract concepts [16], however, there are still some threats
to its pedagogical value. First of all, the learner needs be
actively engaged in the visualization in order to gain its
educational value [9], [16]. Another problem is that, based
on constructive alignment theory [17], activities around the
visualization should be closely aligned with the learning
outcomes (in this case the OOP concepts) for them to be
most effective. Many tools focus on visualization of a specific
program or the objects in it instead of directly aligning the
activities with the underlying OOP concepts, which would be
more effective in terms of teaching OOP concepts.

Analogies have a long history of being used as a learning
aid, they have been proven to be useful in many science
teaching programs [18]–[21], and also in computing education
[22], [23]. Studies have shown that analogies are particularly
effective in learning abstract concepts because they make
abstract information more sensible and concrete [24]. OOP
concepts are abstract, and because of this abstract nature, they
can be represented through analogies. Analogies hide away the
technicalities of a program and extract the concepts behind it.
By using analogies, things that students are already familiar
with can be related to a new unknown domain, thus allowing
a transfer of knowledge to happen more easily [25]. However,
analogies need to be designed carefully, because students can
easily misinterpret them and develop misconceptions [22].

Given the combined successes and shortcomings of existing
solutions, this research proposes combining both visualization
and analogies to work together in helping students understand
OOP concepts better. Analogies make abstract concepts easier
to understand but there is the risk of misinterpretation; visu-
alization can help mitigate this risk. If we present the analogy
visually, and carefully model it to match the intention, then the
chance of it being misinterpreted (or at least “mis-visualized”)
is hopefully reduced. Based on those ideas, we present Visu-
alization of OOP concepts with Analogies (VOOPA) [26]. The
evaluation was carried out with 253 students in a CS2 course.

II. LITERATURE REVIEW

This section summarizes literature related to issues around
OOP learning, analogies, visualization, and existing tools.

2

A. OOP Concepts, Misconceptions, and Difficulties

Armstrong [27] suggested that there is a lack of consensus
on what constitutes OOP. Different studies have used different
sets of concepts to describe it. Despite that, the Computer
Science Curricula 2013 [4] provides good guidance on what
students should understand about OOP. It identifies objects
with state and behavior, classes with fields, methods and
constructors, inheritance, and dynamic dispatch as knowledge
that students “must have” in any computer science degree,
while subtyping, encapsulation, and collections are listed as
“should have” knowledge [4].

OOP is often recognized for being difficult to learn and
teach, resulting in it being extensively studied by educators.
After exploring a wide range of studies incorporating students
and experts opinions, the difficulties and misconceptions were
identified and partitioned into seven categories shown in
Table I. It is worth noting that some studies have conflicting
opinions on which misconceptions and difficulties students
have. For example, the misconception “Conflation between
class and object” was found by Holland et al. [8], Ragnois
and Ben-Ari [28], Sanders and Thomas [29] and Sanders et al.
[30], but Thomasson et al. [31] and Xinogalos [13] explicitly
stated that this misconception was not found in their study.
Such opposing results might have been caused by how studies
were conducted, how the OOP courses were taught, or just
general differences from cohort to cohort. In this research, the
tool will aim to cater for as many categories as possible to
make it valuable in different teaching settings.

Variation theory [32] suggested that in order to discern a
critical aspect of a phenomenon, one must first experience
variation in dimensions that correspond to that aspect. Holland
[8] suggested that one reason students might develop miscon-
ceptions is due to lack of variation in teaching examples.
Variation theory also suggests that when particular aspects
of a phenomenon vary, and other aspects are kept constant,
the varying aspects are discerned [33]. These ideas encourage
VOOPA to use code snippets that incrementally build on the
same example to cover a range of different topics.

B. Analogies in Education

Various theories have been developed as to why analogies
help students understand concepts better [25], [40]. Applica-
tion of analogies in teaching have been proven to be successful
in various domains [18], [21], [24], as well as in computer
science [22]. Analogies are useful in education because they
are fundamental cognitive tools [21], [41], [42]. Furthermore,
Simons [24] suggested that they are useful because they have
three functions: concretizing, structurize new information, and
active assimilation. Their theory was supported quantitatively
through a series of experiments on students reading text
with and without analogies. Amongst the three functions,
the concretizing function is particularly interesting for this
research. Since OOP concepts are inherently abstract (there-
fore contributing to the difficulty in learning them), analogies
could help students concretize them, making them easier to
grasp. Brown and Aradalan [41], [43] also suggested analogies

can help students overcome misconceptions by restructuring
incorrect information and forming a new explanatory model.

Gentner’s Structure–Mapping Theory [44] provided some
insights on how to develop effective analogies. It suggests
when comparing a source analog to a target, we tend to map
relations between objects in each analog, especially higher
order relations. This means instead of using multiple inde-
pendent analogies to represent different aspects of a system,
using another system as an analogy is preferable. Thagard
[40] provided similar theory on using analogies in education,
suggesting that the source and target analogs should have
semantic similarity and structural correspondence. Various
studies have found that analogies, if not used carefully, can
lead to misconceptions. This is because a source analogy, no
matter how carefully chosen, can never match the target per-
fectly [22], [40] and disanalogous features will exist inevitably.
Orgill and Bodner’s [45] suggested a potential solution with
visualization. It helps students overcome misconceptions by
demonstrating exactly which parts of the analogy are alike.

C. Visualization

Visualization has been used extensively in computing ed-
ucation. The most common forms include visualization of
algorithms, data flow and program execution [46]. Visualiza-
tion was used by Sorva [47] in programming education in
the form of visual program simulation. Sorva suggested that
this form of visualization is theoretically sound and is helpful
to students demonstrated by an empirical evaluation. Sorva’s
findings gave us confidence in using visualization and program
tracing as part of our research. In a meta-study of existing
visualization tools, Hundhausen et al. [48] suggested that when
working on a visualization tool, one should not only focus
on its expressiveness, but also consider its effectiveness. They
suggest that the way students use visualization is actually more
important than the content of the visualization itself, and that
the amount of effort (or engagement) students have plays a
vital role in their learning. This theory on engagement is later
confirmed by many other studies and has enormous impli-
cations on visualization tools developed afterwards [9], [46],
[49], [50]. This means that visual tools should ensure students
are actively participating instead of passively watching.

D. Existing Tools

Modern visual programming environments include the likes
of Scratch [51] and Blockly [52]. These block-based lan-
guages have shown great success and popularity with younger
learners. Alice is one of the prominent learning tools that
has been used extensively in teaching OOP [1], [10]. Like
this research, Alice is a three-dimensional (3-D) visualization
tool. Cooper [9] revealed that one of the key pedagogical
design feature in Alice is to make state visible to students
as much as possible. Cooper also argued since the students
created their own animation, a higher level of engagement
was achieved. BlueJ is also a well known teaching tool in the
OOP domain. Kölling et al. [14] suggested that the three key
goals for BlueJ were to provide a truly OOP environment, to
allow interactions with objects for experimentation, and as a

3

TABLE I
LIST OF OOP DIFFICULTIES AND MISCONCEPTIONS FROM THE LITERATURE

Category Misconception (M) and Difficulty (D)
1. Class and Object a. Understanding the nature of a class as a template for creating objects (D)
[3], [8], [13], [28]–[31], [33]–[35] b. Understanding the relationship between class and object (D)

c. Conflation between class and object (M)
d. Conflation between objects and variables (M)
f. A class is a collection of objects (M)
g. An object is just a piece of code (M)

2. Identity and Attribute a. Understanding the relationship between an object, its identifier and its attribute (D)
[3], [8], [28], [29], [31], [36] b. Two variables cannot hold the same reference to an object (M)

c. Two objects of the same attribute must be the same object (M)
d. An attribute can be used as an identifier for an object (M)
e. An object’s textual (string) representation can be used as its identifier (M)

3. Methods and Invocation a. Understanding a method can be invoked with any object from that class (D)
[6], [28], [29], [37] b. Method invocation using the dot operator (D)

c. Understanding method overloading (D)
d. Methods can add attributes (M)
e. Methods can only perform assignments instead of message passing (M)
f. Methods cannot be the same name even if they are in different classes (M)
g. Methods can only be invoked once (M)

4. Constructor and Instantiation a. Understanding the need to invoke a constructor with the “new” keyword and the memory allocation that comes
with the instantiation (D)

[6], [28], [29], [36], [37] b. Understanding the default constructor (D)
c. Understanding the copy constructor (D)
d. Constructors are automatically called (M)
e. Constructors can only be called once (M)

5. Inheritance and Polymorphism a. Understanding the purpose for inheritance (D)
[34], [37], [38] b. Understanding virtual functions and method overriding (D)

c. Understanding how methods are called by dynamic dispatch (D)
e. A downcast is always possible on the inheritance hierachy (M) (D)
f. The variable type determines method dispatch (M)
g. Overriding eliminates the overriden method (M)

6. Composed Class and Encapsulation a. Manipulating a class storing a reference to another (D)
[8], [13], [28]–[31], [36] b. Understanding the need for information hiding (D)

c. Simple class objects will be created when the composed class object is created (M)
d. An object cannot be the value of an attribute for another object (M)
e. Methods that were declared in the simple class must be declared again in the composed class (M)
f. Attributes defined in the simple class automatically becomes attributes in the composed class (M)

7. Program Execution a. Understanding how objects communicate and interact during program execution (D)
[28]–[30], [35], [39] b. Understanding how methods operate on attributes (D)

c. Understanding the relationship between methods and objects (D)
d. Understanding the role of the “main” method with respect to program state (D)
e. Methods execute in the order that they were defined in the class (M)

4

Fig. 1. The overall design process. The first two stages follow traditional
constructive alignment. We propose the addition of the third stage—interaction
with a visual analogy.

simplified IDE interface. Greenfoot [53] was developed as an
extension to BlueJ to improve interactions on objects. Similar
to BlueJ and Greenfoot, AGUIA/J [54] acts like an IDE. The
difference is they present textual information visually and
allow interactions such as giving instructions to objects. They
are more general and flexible in the sense that teachers decide
what activities are designed. For example, one activity could
explain methods using a robot, while another activity could use
houses to illustrate the concept of inheritance. This research
takes a different approach, in that we try to demonstrate a
specific pre-designed set of OOP concepts that are known to
be difficult for students. The activities designed will directly
map to these concepts through the use of an analogy.

III. DESIGN

Fig. 1 illustrates the design process underpinning the
VOOPA development. It includes three stages: defining tar-
geted concepts, designing activities, and developing the visual
analogy. The first two stages are inspired by constructive
alignment [55], which suggests learning is more effective when
activities are closely aligned with the learning outcomes de-
fined. This well-established theory was followed to maximize
value of the VOOPA activities, by explicitly targeting mis-
conceptions and difficulties identified in the literature. Once
the learning outcomes and the activities were set, the visual
analogy was developed to be used alongside the activities.

A. Define Targeted Concepts

The Computer Science Curricula 2013 (CS2013) [4] spec-
ifies a set of learning outcomes to be covered under the
PL/Object-Oriented Programming knowledge unit. None of
the topics within this unit are considered Elective hours, and
are listed as either Core-Tier1 or Core-Tier2 hours. With that
said, some topics such as interfaces and abstract classes were
not selected; these topics rely on the understanding of more
general concepts such as inheritance and polymorphism, which
were the primary focus of this work. More general topics like
collections and usage of libraries are ignored in this work. The
sub-topics selected from this knowledge unit include:

[Core-Tier1]
• Object-oriented design

◦ Decomposition into objects carrying state and having behavior
◦ Class-hierarchy design for modeling

• Definition of classes: fields, methods, and constructors
• Subclasses, inheritance, and method overriding
• Dynamic dispatch: definition of method-call

[Core-Tier2]
• Subtyping (cross-reference PL/Type Systems)

◦ Subtype polymorphism; implicit upcasts in typed languages
◦ Notion of behavioral replacement: subtypes acting like supertypes
◦ Relationship between subtyping and inheritance

• Object-oriented idioms for encapsulation
◦ Privacy and visibility of class members
◦ Interfaces revealing only method signatures
◦ Abstract base classes

Also from the CS2013 guidelines, the following relevant
learning outcomes were selected:

[Core-Tier1]
LO1. Design and implement a class. [Usage]
LO2. Use subclassing to design simple class hierarchies that allow

code to be reused for distinct subclasses. [Usage]
LO3. Correctly reason about control flow in a program using dynamic

dispatch. [Usage]

[Core-Tier2]
LO5. Explain the relationship between object-oriented inheritance

(code-sharing and overriding) and subtyping (the idea of a
subtype being usable in a context that expects the supertype).
[Familiarity]

LO6. Use object-oriented encapsulation mechanisms such as
interfaces and private members. [Usage]

B. Design Activities

The learning outcomes within CS2013 are high-level
overviews, and not as detailed as the misconceptions and
difficulties identified in the literature. The activities were there-
fore designed to target the misconceptions and difficulties,
which would inherently cover the CS2013 learning outcomes.
Table II presents two example activities; each is composed
of the learning outcome and misconception or difficulty it
covers along with the code snippet for the activity. The design
of the activities followed the variation theory introduced in
Section II-A, which suggests to keep most aspects constant
while varying only some particular aspects as this helps those
varying aspects be discerned [33]. Therefore, the code snippets
chosen had a running theme of a Person class. The class
was introduced in the first activity and gradually expanded
by adding more fields, attributes, and eventually extended
with subclasses. This ensures that code snippets between two
consecutive activities are very similar, and the difference is
often used to demonstrate a particular new learning point. This
design not only follows variation theory, but it also reduces
the time needed for students to comprehend the code snippets.

C. Develop Visual Analogy

The visual analogy development involves both the static
aspect of having an analogy, and the dynamic aspect of how
the analogy could be interacted with. Since the aim of the
analogy was to present OOP concepts, they were designed to
be language independent. The overall design follows Gentner’s
Theory mentioned in Section II-B, which led us to develop a

5

TABLE II
EXAMPLE ACTIVITIES WITH THEIR TARGETED LEARNING OUTCOMES AND MISCONCEPTIONS/DIFFICULTIES

Activity Learning Outcomes Misconceptions/Difficulties
(Based on Table I) C++ Code Snippet (Student extends Person)

Constructor
with parameter

LO1. Design and implement a class

Understand how an object is
instantiated through its constructor

Constructor and Instantiation
(4a, b)

Calling an in-
herited method

LO2. Use subclassing to design
simple class hierarchies that allow
code to be reused for distinct subclasses.

Understand attributes are inherited
when subclassing

Understand how to call an inherited method

Inheritance and Polymorphism
(5a, b, c)

cohesive set of analogies that revolve around a main theme.
Fig. 2 will be used to help illustrate the analogy and how it
maps to core OOP concepts. In this simple Example class,
there are two overloaded constructors (one has no parameters,
the other has a parameter p1). There are two private fields
f1 and f2, and two instance methods: foo (private with a
local variable v1) and bar (public with a parameter p2).

1) Instance and Classes: As we were trying to map object-
oriented concepts, the concept of an object (instance) naturally
becomes the main focus point. Tanielu et al. [56] introduced
the notion of a house as an analogy for an instance. We
determined that this is an appropriate analogy to use for
a few reasons. First, the concept of a house is easy to
understand, making it pragmatic. Second, instances and houses
have semantic similarity. Instances have states that are usually
stored internally and are not visible to the rest of the program
according to encapsulation. Similarly, houses can store things
that are not visible to the outside world. Since we have decided
an instance is a house, the notion of a class naturally becomes
the blueprint (or architectural drawing plans) of the house.

Instance methods are mapped to rooms of the house, which
are located within the house next to each other in a somewhat
circular orientation. With this orientation, each rooms provide
for internal and external doors, which map to private and
public accessibility. In this regard, constructors are considered
as special methods—but methods nonetheless. If a method
is declared as public (e.g., Example() and bar()), it
will have both an internal and external door. Otherwise (e.g.,
foo()), it will only have an internal door (i.e., the method
is only accessible from inside the instance).

A variable is mapped to a box with a label on it specifying
its name and type. This analogy is commonly used to denote
how values may be stored inside a variable. This idea is
consistently used for instance fields, parameters, and local
variables; what differs, is where that box is located. In the case
of an instance field, the box would be placed at the centre of
the house to reinforce the idea that fields are accessible by
all methods of the instance (e.g., f1 and f2). Parameters
are mapped as boxes located on the window sill of the room

Fig. 2. Mapping of core OOP concepts to the house analogy, illustrated as
the plan view of a house. The small rooms correspond to methods, accessible
via the respective doors. Variables are represented as boxes, located based on
whether they are fields, parameters, or local variables.

(e.g., p1 and p2), allowing method arguments to be placed
in them before entering the room, but still be accessible once
inside the room. For a method-specific local variable (e.g.,
v1), the box is located inside the room and is only accessible
to that room (unlike the field boxes in the center of the house).

Calling a public method was mapped to the interaction
of entering a room through its external door. This mapping
is analogous to doors having semantic similarity of “entry
points” of methods. The room represents the method body,
and once inside a method, the internal door opens to reveal

6

other methods and fields that are accessible. Structural corre-
spondence is also achieved as the process of walking through
the room to access items inside the house matches the process
of calling a method to access instance fields.

2) Inheritance and Polymorphism: In order to cater for
inheritance, the analogy required an extension that seemed
natural to the core analogy described above. The notion of
a multi-level house seemed to naturally support this. A child
class extends a parent class, in very much the same way an
additional floor would extend and be built on top of an existing
(base) floor. In fact, the terms “parent class” and “base class”
are used synonymously in OOP terminology. A child class
may access information from both the parent class and the
child class itself, and a multi-level house allows each level to
represent information from the respective class while easily
navigating to the parent class level.

Fig. 3 illustrates the core ideas that allow the analogy
to support inheritance and polymorphism. Since inheritance
allows information from multiple classes to be accessed from
one instance, there needs to be a mechanism to move between
the levels of the house. Lifts were used to represent the idea
that inherited attributes are accessible between the parent
and child classes. A lift is appropriate not only because it
creates transportation between the two levels, but also because
it allows user initiated actions just like a developer attempting
to access fields and methods from both classes at compile time.
To ensure both public and private attributes can be accessed,
our design had an external lift and an internal lift. The external
lift allows for public operations on an instance (e.g., accessing
m3() from outside the class), while the internal lift allows for
private operations within an instance (e.g., accessing f1 while
on the Child level). These operations needed to be treated
separately as they have different rules in OOP.

Polymorphism is the ability for an object to take multiple
forms, and its most common use is when a child class instance
is stored in a parent class type variable. The main thing we
needed to map for polymorphism is the dynamic dispatch
mechanism: determining which method to call at runtime
rather than at compile time. Since this also involves accessing
an attribute from a different class, movement between the
floors is needed once again. We decided to map runtime
polymorphism to moving platforms placed in front of method
doors. Unlike inheritance where the developer knowingly
accesses specific members at compile time, polymorphism
is the runtime behavior that is automatically actioned and
requires no explicit coding action initiated by the programmer.
Therefore, the lift was deemed unsuitable here as it was
used to represent user-initiated action. The moving platform
therefore moves automatically when dynamic dispatch takes
place. An example would include calling the m2() method for
an instance of Child on a variable declared of type Parent.
Programmatically (and also within the analogy), it appears as
one is about to enter the room for the Parent level, but
instead the platform moves up to the Child level (thereby
invoking the implementation of the Child class).

Fig. 3. Mapping the core concepts of inheritance and polymorphism by
extending the house analogy. Multiple floors represent classes extending
a base class, with external and internal lifts used to represent developer-
initiated access to inherited components. Polymorphism (dynamic dispatch)
is represented using moving platforms in front of method doors.

D. VOOPA Application

VOOPA [26] was implemented as a tool to present the core
analogy elements to students visually, and also allowing them
to interact with those elements. We decided to take a first-
person virtual world approach. To ensure students understand
the concepts presented in each activity, we set the goal for each
activity as tracing through the code snippets provided step-
by-step. It was therefore similar to a game, where the main
quest is to perform actions defined by the code. The actions
students can take matches with the designed interactions with
the analogies. For example, if the code snippet shows that a
method is to be called on an object, then the student must walk
to the “method room” and open its external door. Students
would also have the chance to explore the virtual world as they
find where they need to go. There are, however, restrictions
on where they can go and what they can see. For example,
students would not be able to visit or see any internal fields
before entering a method room due to encapsulation.

Fig. 4 shows the general user interface when a student uses
VOOPA. Apart from the main virtual world, several panels
were used to indicate different information to the student. The
code panel on the right displays the code that the student is
supposed to trace. To help students understand their progress,
the next line of code to be executed is highlighted in green. The
console at the bottom right corner displays any content from
the print statements. The minimap at the bottom left shows a
map of the house to help students orient in the virtual world.
It also shows the current position of the student with a yellow
arrow, and the current floor the student is on (which is helpful
for multi-level houses). The action indicator at the top of the
screen shows that an automatic action is in progress (e.g.,

7

Fig. 4. Screenshot showing the VOOPA virtual world, as well as (A) the
code panel, (B) the console, (C) the minimap, and (D) the action indicator.

when a method is called, the student would be taken into the
room automatically).

Fig. 5 shows the steps involved in one of the introductory
activities, in this case the interactions demonstrating how
an instance is created in VOOPA. This involves the student
declaring a variable, creating an instance, and entering the
constructor to initialize the instance field. Fig. 6 shows the
steps for a more advanced activity, by calling a polymorphic
method. In this case, the variable is declared as the base-class
type (hence only the house’s bottom level is accessible in the
analogy). The method being called is actually overridden (by
the child class) and so polymorphism is “taking over.”

IV. EVALUATION

The primary goal of the evaluation is to assess the peda-
gogical effectiveness of the VOOPA learning tool. To achieve
this, learning gain and confidence gain were used as measures.
The learning gain was determined by assessing students’ con-
ceptual understanding of core OOP concepts, while confidence
gain was determined by measuring students’ self-efficacy (self-
perceived competency). The evaluation also looked at other
aspects related to software usability and student engagement.
These goals are summarized in the following research ques-
tions:

RQ1. How effective is a visual analogy tool in helping students
understand OOP concepts and overcome misconceptions?

RQ2. How effective is a visual analogy tool in helping students
gain confidence in visualizing OOP concepts?

RQ3. What are the usability considerations in developing a
visual analogy tool?

A. Methodology

The participants all came from a CS2 course. It was a
compulsory programming course for all second-year engineer-
ing students across three different majors: computer systems
engineering, electrical and electronics engineering, and mecha-
tronics engineering. Using C++, the 12 week course covered
OOP in the first six weeks followed by data structures and
algorithms in the second six weeks. The evaluation discussed
here was carried out in weeks 5–6 of the course. It is important
to note that these students are not in a software major, meaning
that programming might not be strength or interest for many

TABLE III
TYPES OF EVALUATION QUESTIONS

Name Question type Pretest Posttest Follow-up
Knowledge questions Multi-choice ✓ ✓
Confidence questions Likert scale ✓ ✓ ✓
Usability questions Likert scale ✓ ✓
Open questions Open text ✓

(the software engineering major takes separate courses). The
application was given as a supplementary tool for students to
reinforce their understanding. Almost all of the OOP concepts
covered in the application were first presented to students
during lectures, before the application was delivered. As such,
students were not expected to be learning the OOP material
from the application itself.

Of the 296 students enrolled in the course, 284 students
(96%) at least accessed the application. However, for the
purposes of this evaluation, only the 253 students (85%) that
completed all the tasks are included in the analysis. The eval-
uation setup shown in Fig. 7 incorporated a pretest–posttest
design, a randomized controlled design, and a counterbalanced
measures design. This involved randomly allocating students
into one of two groups: the Treatment group (VOOPA) and the
Control group (slides). The pretest–posttest allowed measuring
the immediate before-and-after knowledge of both groups. The
additional counterbalanced measures design ensured neither of
the Control or Treatment groups were disadvantaged. For the
Control group, explanatory slides were developed to mimic
the same activities presented in VOOPA.

Table III shows the types of questions asked in each stage of
the evaluation. The knowledge test questions were composed
of 18 multiple choice questions on OOP concepts, as might be
expected in a mid-term test. These were asked in the pretest
and posttest to determine the impact on learning. The questions
can be generally divided into conceptual and code analysis
ones. The full set of questions are listed in the Appendix.

The confidence questions were composed of 14 Likert-scale
(five-point) questions on students’ confidence in visualizing
various OOP constructs. These were asked in the pretest,
posttest, and follow-up questionnaire. All questions were in
the form of “I am confident with visualizing <topic>.” The
specific topics targeted by these confidence questions are listed
in Table VIII. These questions were selected by the authors,
based on the target concepts listed in CS2013.

The usability questions were asked every time after stu-
dents engaged with either VOOPA or the slides, while open
questions were asked when students were exposed to both
options. All the pretest, posttest and follow-up questionnaire
were asked independent of VOOPA and slides, but were
incorporated into the respective method to ensure students
answered them in the correct order of the evaluation.

B. Results

1) Overall knowledge test scores: The first null hypothesis
is that students do not learn anything using VOOPA. That is,
their knowledge performance in the posttest (T Po) is the same

8

(a) (b) (c) (d) (e) (f)

Fig. 5. An example interaction showing how an object is instantiated. (a) Declaring a variable and creating an instance by pressing the construct buttons
underneath the class blueprint. (b) Revealing the instance created. (c) The constructor is invoked. (d) Entering the room representing the constructor. (e)
Initializing a field by picking up the empty string literal. (f) Placing the literal in the box located at the centre of the room that represents the instance’s field.

(a) (b) (c) (d) (e) (f)

Fig. 6. An example interaction for calling a polymorphic method. (a) An external lift when entering the house, which cannot be accessed due to the instance
variable type being declared as a parent type. (b) When attempting to enter the polymorphic method room, the white platform in front of the room will raise.
(c) The platform goes to the floor above automatically to enter the method room above. (d) Once inside the child’s overridden method, the internal door
opens to allow exploration of the fields declared in the child class. (e) An internal lift, which leads down to the base floor to access fields in the base class.
(f) Returning back to the child class using the same internal lift once done.

Fig. 7. The evaluation design involved randomly allocating students into two groups: treatment and control. Only the n = 253 students that fully completed
the activities are included in the study. After a pretest, the treatment group will use VOOPA whereas the control group will use slides to learn. The pretest-
posttest design evaluated differences in learning and confidence across the two groups, while the counterbalanced measures design ensured fairness in learning
opportunity.

as their performance in the pretest (T Pr). The before and after
score results are presented in Table IV. Shorthand notations are
used to represent the data source of the comparison (e.g., TPr
stands for Treatment group at the Pretest). Both groups had a
p-value of < .0001, indicating there is statistically significant
evidence that the students’ understanding of OOP concepts
improved after using the application (i.e., there is a learning
gain). We can therefore reject the null hypothesis, as there is
statistically significant improvements.

The next null hypothesis is that there is no difference
in learning gain between students using VOOPA versus the
slides. That is, knowledge performance of the VOOPA group’s
posttest (T Po) is the same as knowledge performance of the
control group’s posttest (CPo). The results presented in Table
V confirm that both groups showed no statistically significant
differences before the intervention, which is expected as the
groups were randomly allocated. It is also shown that the
differences of the two groups’ test scores were still not
statistically significant after the intervention. We therefore
cannot reject the second null hypothesis of there being no

difference between the two methods.

2) Breakdown of individual test questions: In order to
understand which questions led to the improvement of the
overall score, analysis was carried out on each question in the
knowledge test individually. Again, both paired and unpaired
comparisons were made. The McNemar’s test was used as
the paired test for the CPr–CPo and TPr–TPo comparisons, with
these results shown in Table VII. All the questions that had a
statistically significant difference had an increase in accuracy,
thus there is no question that suffered a statistically significant
decrease in correct response for either group. The Control
group had six questions that were improved with statistical
significance after learning, while the Treatment group had
four. For the unpaired tests, the Chi-Squared Test was used.
Only Question 11 in the Posttest had a statistically significant
difference between the two groups. 90% of students in the
Control group answered this question correctly in the Posttest
whereas only 77% in the Treatment group. It is interesting to
note that both groups had statistically significant improvement
on this question after engaging with the exercises as per Table

9

TABLE IV
ONE-TAILED PAIRED t-TEST RESULTS FOR TEST SCORES

Name
Pretest
Mean

Posttest
Mean

Standard Error
of Difference

95% Lower
Bound

t-value df p-value

CPr–CPo 12.44 13.50 0.195 0.68 5.4467 125 < .0001
TPr–TPo 12.34 13.10 0.174 0.42 4.3966 128 < .0001

TABLE V
TWO-TAILED UNPAIRED t-TEST RESULTS FOR TEST SCORES

Name
Control

Group Mean
Treatment
Group Mean

Standard Error
of Difference

Lower
Bound

Upper
Bound

t-value df p-value

CPr–TPr 12.44 12.34 0.361 -0.61 0.82 0.2882 253 .7734
CPo–TPo 13.50 13.10 0.386 -0.36 1.16 1.0435 253 .2977

TABLE VI
USABILITY AND ENGAGEMENT RESULTS COMPARING CONTROL AND TREATMENT GROUPS USING THE WILCOXON SIGNED-RANK TEST, SHOWING

THE CPO –TPO , AND THE CF–TF COMPARISONS

Posttest
CPo–TPo

Follow-up Questionnaire
CF–TF

W p-value W p-value
Q1. app was easy to use 6290 < .0001*** 6762.5 < .0001***
Q2. app was fun and engaging 3959 .9568 4561 .4555

*** Significant at .001 probability level

VII, with the Control group starting at only 69% and the
Treatment group starting at 63%.

3) Self-efficacy: Table VIII and Table IX show the results
of the one-tailed Wilcoxon signed-rank tests for the Control
group and Treatment group respectively. From the results, we
can make the following observations:

• For the Control group, after using the slides as their
first study method, student confidence increased for all
questions except Question 2.

• For the Control group, student confidence continued to
increase (for 11 out of the 14 questions) when VOOPA
was used after the explanatory slides.

• For the Treatment group, after using VOOPA as their first
study method, student confidence increased in 8 out of
the 14 questions.

• For the Treatment group, student confidence continued to
increase (for 12 out of the 14 questions) when explanatory
slides was used after VOOPA.

• For both Control and Treatment groups, student confi-
dence increased for all questions after being exposed to
both study methods.

4) Usability and Engagement: As usability and engagement
were not core items to be evaluated, there were only two five-
point Likert scale questions. Those are shown in Table VI.
They indicated that there was a statistically significant differ-
ence for ease of use. Students generally found the slides easier
to use. The results also showed no significant difference in
self-reported engagement levels. Usability issues are discussed
in more details in the qualitative analysis.

5) Qualitative analysis: The good: Many students generally
felt VOOPA helped them understand OOP concepts better:
S1: The visualization application actually helped me under-

stand most of the things that I was struggling with in
class.

S2: It was a very good summary of what we went over in
lectures. Definitions of the new terminologies became
very clear after this exercise.

Many students were able to appreciate the analogies and
liked them, with some of them commenting that the analogies
were cohesive, with every analogy revolving around the house:
S3: Having the same theme throughout (the house) and having

each method as its own room helped to understand and
retain the knowledge.

S4: I liked the way every OOP concept (e.g., pointers, meth-
ods) had their own visual analogy.

S5: The visualizations and analogies for each concept let me
easily understand how the code worked.

Many students also found VOOPA very helpful for under-
standing the concepts of inheritance and polymorphism. Some
also mentioned it helped clear some of the misconceptions:
S6: The last few exercises were good at helping me visualize

inheritance and polymorphism.
S7: I realized that a base class and derived class are more

“intimate” than I had previously thought. ... It especially
helped to improve my understanding of “permissions” of
a pointer of type [base] pointing to a [derived] object.

S8: The visualization analogy helped clear up some confusion
surrounding pointers and polymorphism.

Confidence boost was also apparent:
S8: I have always found programming quite difficult because

it is so abstract. It was hard to imagine what is actually
going on. By using this visual analogy, it has helped
me clear up what variables can be accessed by which
instances/class types.

10

TABLE VII
MCNEMAR’S TEST RESULTS FOR CONTROL GROUP AND TREATMENT GROUP COMPARING PERFORMANCE FOR EACH QUESTION, SHOWING THE

CPR –CPO AND TPR –TPO COMPARISONS

Question
no.

Topic
Control Group

(CPr–CPo)
Treatment Group

(TPr–TPo)
χ2 p-value χ2 p-value

1 Class and object—purpose of class 0.08 .7815 2.78 .0956
2 Constructor and Instantiation—purpose of a constructor 1.80 .1797 1.60 .2059
3 Constructor and Instantiation—time of object instantiation 0.47 .4913 0.00 1.0000
4 Program Execution—purpose of methods 0.33 .5637 0.07 .7963
5 Methods and Invocation—purpose of methods 0.17 .6831 0.18 .6698
6 Program Execution—execution order of methods 1.29 .2568 0.53 .4669
7 Methods and Invocation—calling instance methods 0.39 .5316 2.00 .1573
8 Identity and Attribute—purpose of “this” 0.00 1.0000 0.18 .6698
9 Inheritance and Polymorphism—multiple constructor calls 7.53 .0061** 4.00 .0455*
10 Inheritance and Polymorphism—multiple constructor calls 5.00 .0253* 7.11 .0077**
11 Inheritance and Polymorphism—available method calls 19.70 < .0001** 9.76 .0018**
12 Inheritance and Polymorphism—available method calls 6.55 .0105* 0.00 1.0000
13 Inheritance and Polymorphism—available method calls 0.60 .4386 4.50 .0339*
14 Inheritance and Polymorphism—available method calls 9.38 .0022** 0.86 .3545
15 Inheritance and Polymorphism—dynamic dispatch of methods 12.60 .0004** 3.10 .0782
16 Inheritance and Polymorphism—fields accessibility 3.60 .0578 2.95 .0858
17 Composed Class and Encapsulation—method call on composed object 1.65 .1985 3.27 .0704
18 Composed Class and Encapsulation—access field of composed object 0.43 .5127 0.67 .4142

* Significant at .05 probability level
** Significant at .01 probability level

S9: It was very useful and make me more confident in my
understanding of OOP.

6) Qualitative analysis: The bad: On the contrary, there
was also some negative feedback. It seems that some students
did not appreciate VOOPA as a learning tool and prefer the
more traditional explanatory slides method:

S10: Slides with diagrams were good, visual game was bad.
S11: I’ve already done an OOP course and so this was just

painful. I wish I hadn’t done them, I just feel confused
about something I already understood.

S12: I found it hard to relate playing the game to program-
ming concepts.

Usability was a very big issue reported by a lot of students,
including those who found the tool useful. This was consistent
with the usability comparison presented previously. The cursor
not being locked and the frame rate being too low were the
two most frequently reported issues:

S13: The cursor makes it hard to look around sometimes.
S14: I got sick of moving floors within the game cos the game

was laggy.

Some students also reported feeling motion sickness after
using the tool, and it impaired their ability to learn from it:

S15: I also got a bad headache from the graphics.
S16: I got crazy motion sickness playing this game, having to

take a few minutes break after the levels.

V. DISCUSSION

A. Learning Gain

RQ1: How effective is a visual analogy tool in helping
students understand OOP concepts and overcome miscon-
ceptions?

Student scores on the knowledge test questions had a
statistically significant improvement for both the “traditional”
learning style (using explanatory slides) and VOOPA. This
means a learning gain was achieved by both approaches. This
gives some degree of confidence in the value of VOOPA in
the learning of OOP concepts. The traditional use of slides
also had a statistically significant improvement in test scores.
This was not surprising, as slides tend to be more familiar
to both teachers and students. The comparisons between the
control group and the treatment group revealed that student
test scores had no statistically significant differences. This
result shows neither form of learning is superior than the
other, and VOOPA cannot be used as a replacement for
traditional teaching methods. Rather than viewing VOOPA as a
contender against traditional modes of learning, we speculate
that using both forms of learning together would maximize
learning. Unfortunately this study cannot verify this, as the test
questions were not repeated in the follow-up questionnaire.

Analysis of individual questions showed that questions with
significant improvement were all in the inheritance and poly-
morphism categories. This is also evident from the qualitative
analysis as the majority of students reported inheritance and
polymorphism being the most helpful content from VOOPA.
The likely reason these topics witnessed most learning benefit
is that they are the more complex topics that students struggle

11

TABLE VIII
CONFIDENCE RESULTS FOR THE CONTROL GROUP USING WILCOXON SIGNED-RANK TEST, SHOWING THE CPR –CPO , CPO –CF AND THE CPR –CF

COMPARISONS

Ques.
no.

Topic Pretest vs Posttest CPr–CPo
Posttest vs Follow-up
Questionnaire CPo–CF

Pretest vs Follow-up
Questionnaire CPr–CF

W p-value W p-value W p-value
1 Methods and Invocation—methods in general 6191 < .0001*** 4163 .2888 7060 < .0001***
2 Class and Object—class versus object 4361 .1481 4085 .3577 5708 < .0001***
3 Class and Object—identify instance with variable 5627 < .0001*** 4782 .0187* 6744 < .0001***
4 Constructor and Instantiation—role of constructor 5242 .0007*** 4062 .3790 6261 < .0001***
5 Class and Object—instance variables 5205 .0008*** 4786 .0182* 6646 < .0001***
6 Class and Object—instance methods 5537 < .0001*** 5258 .0006*** 7034 < .0001***
7 Methods and Invocation—invoking instance methods 5050 .0031** 5278 .0005*** 6844 < .0001***
8 Methods and Invocation—methods modify variables 5366 .0002*** 5206 .0009*** 6976 < .0001***
9 Program Execution—program flow 6171 < .0001*** 5697 < .0001*** 7326 < .0001***
10 Inheritance and Polymorphism—inherited members 7083 < .0001*** 5298 .0004*** 7642 < .0001***
11 Inheritance and Polymorphism—overridden methods 6788 < .0001*** 5285 .0004*** 7581 < .0001***
12 Inheritance and Polymorphism—dynamic dispatch 6623 < .0001*** 5559 < .0001*** 7583 < .0001***
13 Composed Class and Encapsulation—member reference 5627 < .0001*** 6144 < .0001*** 7139 < .0001***
14 Composed Class and Encapsulation—methods 6083 < .0001*** 5858 < .0001*** 7342 < .0001***

* Significant at .05 probability level
** Significant at .01 probability level
*** Significant at .001 probability level

TABLE IX
CONFIDENCE RESULTS FOR THE TREATMENT GROUP USING WILCOXON SIGNED-RANK TEST, SHOWING THE TPR –TPO , TPO –TF AND THE TPR –TF

COMPARISONS

Question
no.

Topic Pretest vs Posttest TPr–TPo
Posttest vs Follow-up
Questionnaire TPo–TF

Pretest vs Follow-up
Questionnaire TPr–TF

W p-value W p-value W p-value
1 Methods and Invocation 5202 .0053** 4625 .1186 6952 < .0001***
2 Class and Object 5208 .0051** 4665 .1006 5230 < .0001***
3 Class and Object 4784 .0592 5138 .0081** 6901 < .0001***
4 Constructor and Instantiation 4204 .4278 5074 .0122* 6386 < .0001***
5 Class and Object 4246 .3890 4949 .0254* 6404 < .0001***
6 Class and Object 4764 .0651 5285 .0030** 6953 < .0001***
7 Methods and Invocation 4507 .1834 5695 .0001*** 7041 < .0001***
8 Methods and Invocation 4199 .4330 5790 < .0001*** 7029 < .0001***
9 Program Execution 5086 .0114* 5562 .0003*** 7415 < .0001***
10 Inheritance and Polymorphism 5831 < .0001*** 6430 < .0001*** 7754 < .0001***
11 Inheritance and Polymorphism 6171 < .0001*** 5674 .0001*** 7601 < .0001***
12 Inheritance and Polymorphism 6548 < .0001*** 5210 .0050** 7376 < .0001***
13 Composed Class and Encapsulation 5055 .0137* 5320 .0023** 7114 < .0001***
14 Composed Class and Encapsulation 5771 < .0001*** 5532 .0004*** 7401 < .0001***

* Significant at .05 probability level
** Significant at .01 probability level
*** Significant at .001 probability level

to understand; there was therefore more scope for improve-
ment compared to the more basic OOP topics (such as classes
and instances). Related to this, another possible explanation is
that students were new to those concepts compared to the basic
OOP topics. The VOOPA exercises were released to students
only days after inheritance and polymorphism were taught in
lectures, so most students would not have yet fully understood
these concepts. Contrastingly, the basic OOP concepts were
taught about 2–3 weeks earlier in the course. It is therefore
likely that most students already had a good grasp of these
basic concepts through course in general.

Naturally, not all elements of OOP (or misconceptions

surrounding OOP) were targeted in the activities and the
knowledge tests. However, due to many OOP concepts being
inherently tied together, targeting some aspect(s) of OOP
will often have carry-on effects to other OOP concepts. For
example, the identity and attribute topic was not covered in
the evaluation questions. However, concepts around identity
and attribute were inevitably incorporated in VOOPA and the
slides. It is therefore possible that improvements are seen in
topics that were not discovered by the evaluation.

Overall, the evaluation seems to suggest positive learning
gains in using a visual analogy tool for OOP concepts. The
VOOPA tool was especially strong in demonstrating more

12

complex concepts such as those around inheritance and poly-
morphism. It is also effective at helping students overcome
misconceptions, as many students reported their understanding
of certain OOP concepts becaming clearer. In terms of the
effectiveness, newer concepts received the biggest impact;
slightly older topics (but still new in terms of learning OOP)
received less benefits. This implies that the timing of such
tools plays an important role in effectiveness. It should be
used very soon after an abstract concept is introduced, and
continue to be used as more topics are covered to allow the
analogy to expand. Further research could be carried out to
investigate the impact of timing on effectiveness.

B. Confidence Gain (Self-Efficacy)

RQ2: How effective is a visual analogy tool in helping
students gain confidence in visualizing OOP concepts?

The analysis showed notable improvements on students’
confidence, both in the Control and Treatment groups. For both
groups, the results suggest that student confidence increased
after the first learning method was provided, and continued to
increase after the alternative method was also introduced. The
overall results showed that student confidence was higher in
every aspect after they used both methods. We can therefore
conclude that both VOOPA and slides have their own merit
in contributing towards student confidence, and using both
together is most beneficial. This is not surprising as it was
never intended for VOOPA to be a replacement for traditional
teaching methods, but rather be a supplementary tool.

With regard to which aspects of OOP had more confidence
boost after using VOOPA, it appears that once again the more
complex topics had a higher impact. In addition to inheritance
and polymorphism, a confidence boost was also apparent in
visualizing program flow and how associated objects work.
This improvement exists regardless whether VOOPA was pre-
sented before or after slides. It shows that VOOPA alone is a
powerful tool to help students construct their own visualization
of these complex and abstract concepts. When VOOPA is used
after slides, areas of improvement extended to more basic
concepts such as visualizing instance variables and instance
methods. We speculate that this is because with the more basic
concepts, stronger students would already have grasped them
and they do not receive as much value from using VOOPA.
With the weaker students however, directly exposing them with
the analogies is not as helpful as explaining to them how the
concepts work and then reinforcing it with the analogies.

C. Usability and Engagement

RQ3: What are the usability considerations in developing
a visual analogy tool?

The quantitative evaluation on usability and engagement
was simple, but results clearly showed that the slides had
much better usability compared to VOOPA. One must concede
that games are going to demand higher interaction complexity,
particularly in comparison to slides (only requiring clicking

“Next” to progress through them). This disparity is especially
going to be prominent when the learner is not “a gamer” [57].
In terms of engagement, however, the results showed no sta-
tistical significance in differences between VOOPA and slides.
This was somewhat surprising, as other studies frequently
report visualization tools achieving good engagement [46],
[50]. However, the reason behind this became clear after we
conducted the qualitative analysis, which is discussed next.

There was a large number of responses regarding usability
issues, mostly technical issues. Students reported that the
control was difficult with the mouse not being locked. Un-
fortunately, this was an issue to do with a browser-based
virtual world application that could not be fixed. Students also
reported that the application ran too slow or lagged during the
activities. This issue is mostly caused by hardware specifica-
tion. As a first-person tool, VOOPA requires a good amount
of graphics processing power which many students did not
have on their personal computers. Some students also reported
motion sickness, which is common with simulator applica-
tions [58]. However, this issue was dependent on individual
differences and could not be resolved easily. The existence
of such technical issues likely contributed to the relatively
poor-perceived usability for VOOPA. The poor usability had
a negative impact on student motivation and engagement, as a
number of students complained to the teaching team that the
application was tediously long due to game slowness. Reasons
such as these help cater for the 31 students that accessed the
activities but never completed them.

Despite the relatively poor usability, VOOPA still demon-
strated distinct benefits towards students’ understanding of
OOP confidence and their confidence on visualizing them. It
is possible that VOOPA will become even more powerful if
these technical issues around usability could be fixed. Once
these technical issues are fixed, we are confident that VOOPA
will not only teach students OOP concepts effectively but
also give students an engaging experience while learning. For
future developments, we recommend developers to carefully
consider how the control of the interaction is designed and
the performance of their application. It is important to keep
in mind that many students have never played a first-person
game, and not every student has a high performance computer.

D. Threats to Validity

Although careful thought was put into the evaluation design,
we must also consider the potential weaknesses that might
compromize the validity of the conclusions we draw. The
experiment was given to the students as a mini-assignment
to be completed any time over five days, meaning external
learning might happen during this time that would impact
the results. Repeated testing using the same set of questions
may also have led to students recalling their previous answer.
Threats to validity may also come from the measurements
taken. For example, the set of questions we designed may
not fully demonstrate the “OOP concepts” as the students
understand. There could also be noise and unreliable data
as students might have guessed some responses or provide
answers informed by other sources.

13

E. Lessons Learned

There are many lessons we could learn from in the process
of designing VOOPA. First, we must recognize that the
analogies and activities presented in Section III are the final
product. An iterative software development was used, and
essential, during both the design and implementation phases
of VOOPA. The core ideas underlying the analogy evolved
over two years of trialling it in earlier iterations of the CS2
course. The analogy was expanded and presented to students
and other instructors in order to refine it. This was an important
process to follow, and ensured the quality of the analogy
design. In fact, the analogy details were finalized well before
implementation of the application commenced. This proved
valuable, as it helped guide the expected visualization. A key
design decision for the analogy was that we always wanted
it to be suitable regardless the OOP language of choice. In
fact, since the analogy and its components were programming
language agnostic, this allowed us to easily extend VOOPA to
support Java alongside C++ [26].

Second, a learning tool will always have its limitations,
so selecting the scope of the tool was crucial. This was
more apparent with the use of analogy—as the concepts we
tried to teach became more complex, so did the analogy.
To avoid the analogy became overwhelmingly convoluted,
we decided to leave out aspects of OOP like interfaces and
abstract classes. We felt it would be more helpful to focus
on a set of key learning outcomes that the analogy would
be capable of teaching well, rather than trying to extend it
to cover everything. We were aware that more complicated
analogies not only lead to more difficulty in memorization, but
are also more likely to result in disanalogous features—which
is dangerous in analogy-based teaching [22], [40]. Although
the evaluation for the inheritance and polymorphism elements
was positive, mapping these as lifts and moving platforms
may have already exceeded the definition of a “house” in
most peoples’ understanding, and required some (stretched)
imagination. More work could be carried out to determine
whether the current set of analogies are comprehensible and
memorable, and thus successful in their mission.

Third, we found the use of a software framework or library
can make the development process much easier. VOOPA was
developed using Unity and presented as a browser-based web
application thanks to Unity’s support for WebGL. This made
the application highly accessible to students and also greatly
reduced development time as the web-based deployment sim-
plified testing and trialling across the team. Finally, we found
it was important to consider the usability aspect of the learning
tool. We tried to cater for different types of learners with
different levels of technical confidence when implementing
VOOPA. We also carefully considered things like choice of
color, fonts, and screen real-estate. For example, the code
panel was hideable to reach a balance of visualizing the virtual
world versus mapping to learning points in the code. However,
as we have previously discussed, many students still faced
usability issues which adversely impacted learning with the
tool. It would be a pity if a tool with great content was not
made use of by students because it has poor usability.

VI. CONCLUSIONS

The primary goal of this research was to help students
understand OOP concepts through the use of visual analogies.
After understanding student difficulties and misconceptions on
OOP concepts, various activities and analogies were designed
which aimed at helping students overcome those barriers.
The analogies and their interactions were designed carefully
by following guidelines provided by educational theories. A
software tool, namely VOOPA, was developed to incorporate
the activities and to allow students to visualize and interact
with the analogies. The application was used by 253 students
from a CS2 level course for evaluation. The results showed
that students achieved both a learning gain and a confidence
boost with statistical significance on various OOP concepts
after using VOOPA. Student responses suggested that both
the analogies and the activities used in VOOPA were well
received. VOOPA offers an alternative form of learning sup-
port, achieving statistically significant learning gains in the
study population pre to post-test, and thus is an excellent
complement to existing (traditional) teaching methods.

In the future, many aspects of VOOPA could be extended.
This includes creating more activities and analogies for other
topics. Its usability could be improved, particularly its control,
navigation and display. Evaluations could also be carried out
on a larger scale and in more detail. With a more detailed
evaluation, we could determine which parts of the analogy was
useful and which parts require modification. Also, it would
be helpful to evaluate the effectiveness of the analogy itself
without the visualization. We could also evaluate how effective
VOOPA is when used in conjunction with traditional teaching
methods. Furthermore, we could track students’ performance
in terms of their programming ability in the long term.

REFERENCES

[1] A. A. Al-Linjawi et al., “Using Alice to teach novice programmers OOP
concepts,” J. King Abdulaziz Univ.–Sci., vol. 148, no. 632, pp. 1–20,
2010, doi: 10.4197/Sci.22-1.4.

[2] M. Kölling, “The problem of teaching object-oriented programming, part
1: Languages,” J. Object-Oriented Program., vol. 11, no. 8, pp. 8–15,
Apr. 1999.

[3] M. Teif et al., “Partonomy and taxonomy in object-oriented thinking:
Junior high school students’ perceptions of object-oriented basic con-
cepts,” ACM SIGCSE Bull., vol. 38, no. 4, pp. 55–60, Jun. 2006, doi:
10.1145/1189215.1189170.

[4] ACM/IEEE-CS Joint Task Force on Computing Curricula, Computer
Science Curricula 2013: Curriculum Guidelines for Undergraduate
Degree Programs in Computer Science, New York, NY, USA, 2013,
doi: 10.1145/2534860.

[5] D. Gupta, “What is a good first programming language?”
ACM Crossroads, vol. 10, no. 4, pp. 7–7, Aug. 2004, doi:
10.1145/1027313.1027320.

[6] A. E. Fleury, “Programming in Java: student-constructed rules,” in ACM
SIGCSE Bull., vol. 32, no. 1. ACM, Mar. 2000, pp. 197–201, doi:
10.1145/330908.331854.

[7] L. Grandell et al., “Why complicate things? Introducing programming in
high school using Python,” in Proc. 8th Australasian Conf. Computing
Education (ACE’06), Hobart, Australia, Jan. 16–19 2006, pp. 71–80,
doi: h10.5555/1151869.1151880.

[8] S. Holland et al., “Avoiding object misconceptions,” ACM SIGCSE Bull.,
vol. 29, no. 1, pp. 131–134, Mar. 1997, doi: 10.1145/268084.268132.

[9] S. Cooper, “The design of Alice,” ACM Trans. Comput. Educ., vol. 10,
no. 4, Nov. 2010, Art. no. 15, doi: 10.1145/1868358.1868362.

https://doi.org/10.4197/Sci.22-1.4
https://doi.org/10.1145/1189215.1189170
http://dx.doi.org/10.1145/2534860
https://doi.org/10.1145/1027313.1027320
https://doi.org/10.1145/330908.331854
https://dl.acm.org/doi/10.5555/1151869.1151880
https://doi.org/10.1145/268084.268132
https://doi.org/10.1145/1868358.1868362

14

[10] W. Dann et al., “Mediated transfer: Alice 3 to Java,” in Proc.
43rd ACM Tech. Symp. Computer Science Education (SIGCSE’12),
vol. 12, Raleigh, NC, USA, Feb. 29–Mar. 3 2012, pp. 141–146, doi:
10.1145/2157136.2157180.

[11] F. I. Anfurrutia et al., “Visual programming environments for object-
oriented programming: Acceptance and effects student motivation,”
IEEE Revista Iberoamericana de Tecnologias del Aprendizaje, vol. 12,
no. 3, pp. 124–131, Aug. 2017, doi: 10.1109/RITA.2017.2735478.

[12] M. Kölling, “The Greenfoot programming environment,” ACM Trans.
Comput. Educ., vol. 10, no. 4, Nov. 2010, Art. no. 14, doi:
10.1145/1868358.1868361.

[13] S. Xinogalos et al., “Teaching OOP with BlueJ: A case study,” in
6th IEEE Int. Conf. Advanced Learning Technologies (ICALT’06).
Kerkrade, Netherlands: IEEE, Jul. 5–7 2006, pp. 944–946, doi:
10.1109/ICALT.2006.1652599.

[14] M. Kölling, “Using BlueJ to introduce programming,” in Reflections
on the Teaching Programming. Berlin, Germany: Springer, Berlin,
Heidelberg, 2008, pp. 98–115, doi: 10.1007/978-3-540-77934-6.

[15] M. C. Carlisle, “Raptor: A visual programming environment for teaching
object-oriented programming,” J. Comput. Sci. Colleges, vol. 24, no. 4,
pp. 275–281, Apr. 2009, doi: 10.1145/1047344.1047411.

[16] T. L. Naps et al., “Exploring the role of visualization and engagement
in computer science education,” ACM SIGCSE Bull., vol. 35, no. 2, pp.
131–152, Jun. 2002, doi: 10.1145/960568.782998.

[17] J. Biggs, “Enhancing teaching through constructive alignment,”
Higher Educ., vol. 32, no. 3, pp. 347–364, Jun. 1996, doi:
10.1017/CBO9781139048224.009.

[18] J.-J. Dupin et al., “Analogies and modeling analogies in teaching: Some
examples in basic electricity,” Sci. Educ., vol. 73, no. 2, pp. 207–224,
1989, doi: 10.1002/sce.37307302073.

[19] S. M. Glynn, “Explaining science concepts: A teaching-with-analogies
model,” in The Psychology of Learning Science, 1991, pp. 219–240, doi:
10.4324/9780203052396-17.

[20] C. B. Hutchison et al., “How to create and use analogies effectively
in the teaching of science concepts,” Sci. Activities, vol. 44, no. 2, pp.
69–72, Aug. 2007, doi: 10.3200/SATS.44.2.69-723.

[21] V. Diehl et al., “Elaborated metaphors support viable inferences about
difficult science concepts,” Educational Psychology, vol. 30, no. 7, pp.
771–791, Dec. 2010, doi: 10.1080/01443410.2010.504996.

[22] M. Forišek et al., “Metaphors and analogies for teaching algo-
rithms,” in Proc. 43rd ACM Tech. Symp. Computer Science Education
(SIGCSE’12), Raleigh, NC, USA, Feb. 29–Mar. 3 2012, pp. 15–20, doi:
10.1145/2157136.2157147.

[23] T. R. Colburn et al., “Metaphor in computer science,” J. Applied Logic,
vol. 6, no. 4, pp. 526–533, Dec. 2008, doi: 10.1016/j.jal.2008.09.0057.

[24] P. Simons, “Instructing with analogies,” J. Educational Psychology,
vol. 76, no. 3, pp. 513–527, 1984, doi: 10.1037/0022-0663.76.3.513.

[25] D. N. Perkins et al., “Transfer of learning,” in International Encyclope-
dia of Education, Sep. 1992, pp. 6452–6457.

[26] V. Lian et al. (2021) Visualising object-oriented programming using
analogies. [Online]. Available: https://digitaledu.ac.nz/voopa

[27] D. J. Armstrong, “The quarks of object-oriented development,”
Commun. ACM, vol. 49, no. 2, pp. 123–128, Feb. 2006, doi:
10.1145/1113034.1113040.

[28] N. Ragonis et al., “A long-term investigation of the comprehension of
OOP concepts by novices,” Comput. Sci. Educ., vol. 15, no. 3, pp. 203–
221, Feb. 2005, doi: 10.1080/08993400500224310.

[29] K. Sanders et al., “Checklists for grading object-oriented CS1 programs:
Concepts and misconceptions,” ACM SIGCSE Bull., vol. 39, no. 3, pp.
166–170, Sep. 2007, doi: 10.1145/1269900.1268834.

[30] K. Sanders et al., “Student understanding of object-oriented program-
ming as expressed in concept maps,” in Proc. 39th SIGCSE Tech. Symp.
Computer Science Education (SIGCSE’08), Portland, OR, USA, Mar.
2008, pp. 332–336, doi: 10.1145/1352135.1352251.

[31] B. Thomasson et al., “Identifying novice difficulties in object oriented
design,” ACM SIGCSE Bull., vol. 38, no. 3, pp. 28–32, Sep. 2006, doi:
10.1145/1140123.1140135.

[32] F. Marton et al., Learning and awareness. New York, NY, USA:
Routledge, 1997, doi: 10.4324/9780203053690.

[33] A. Eckerdal et al., “Novice Java programmers’ conceptions of object
and class, and variation theory,” ACM SIGCSE Bull., vol. 37, no. 3, pp.
89–93, 2005, doi: 10.1145/1151954.1067473.

[34] K. Goldman et al., “Identifying important and difficult concepts in intro-
ductory computing courses using a delphi process,” ACM SIGCSE Bull.,
vol. 40, no. 1, pp. 256–260, Mar. 2008, doi: 10.1145/1352135.1352226.

[35] S. Xinogalos, “Object-oriented design and programming: An investiga-
tion of novices’ conceptions on objects and classes,” ACM Trans. Com-
put. Educ., vol. 15, no. 3, Sep. 2015, Art. no. 13, doi: 10.1145/2700519.

[36] R. Shmallo et al., “Fuzzy OOP: Expanded and reduced term interpre-
tations,” in Proc. 17th ACM Annu. Conf. Innovation and Technology
Computer Science Education (ITICSE’12), Haifa, Israel, Jul. 3–5 2012,
pp. 309–314, doi: 10.1145/2325296.2325368.

[37] I. Milne et al., “Difficulties in learning and teaching programming—
views of students and tutors,” Educ. & Inf. Technol., vol. 7, no. 1, pp.
55–66, Mar. 2002, doi: 10.1023/A:1015362608943.

[38] N. Liberman et al., “Difficulties in learning inheritance and polymor-
phism,” ACM Trans. Comput. Educ., vol. 11, no. 1, Feb. 2011, Art. no.
4, doi: 10.1145/1921607.1921611.

[39] J. Sajaniemi et al., “A study of the development of students’ visualiza-
tions of program state during an elementary object-oriented program-
ming course,” J. Educational Resources Comput., vol. 7, no. 4, pp. 1–31,
Jan. 2008, doi: 10.1145/1316450.1316453.

[40] P. Thagard, “Analogy, explanation, and education,” J. Research
Sci. Teaching, vol. 29, no. 6, pp. 537–544, Aug. 1992, doi:
10.1002/tea.3660290603.

[41] K. Ardalan, “Using entertaining metaphors in the introduction of the case
method in a case-based course,” in Exploring Learning & Teaching in
Higher Education. Berlin, Germany: Springer, Berlin, Heidelberg, Sep.
2014, pp. 69–96, doi: 10.1007/978-3-642-55352-3.

[42] J. L. Braasch et al., “The role of prior knowledge in learning from
analogies in science texts,” Discourse Processes, vol. 47, no. 6, pp.
447–479, Sep. 2010, doi: 10.1080/016385309034209606.

[43] D. E. Brown et al., “Overcoming misconceptions via analogical
reasoning: Abstract transfer versus explanatory model construction,”
Instructional Sci., vol. 18, no. 4, pp. 237–261, Dec. 1989, doi:
10.1007/BF00118013.

[44] D. Gentner, “Structure-mapping: A theoretical framework for anal-
ogy,” Cognitive Sci., vol. 7, no. 2, pp. 155–170, Apr. 1983, doi:
10.1016/S0364-0213(83)80009-3.

[45] M. Orgill et al., “What research tells us about using analogies to teach
chemistry,” Chemistry Educ. Research & Practice, vol. 5, no. 1, pp.
15–32, 2004, doi: 10.1039/B3RP90028B6.

[46] J. Urquiza-Fuentes et al., “A survey of successful evaluations
of program visualization and algorithm animation systems,” ACM
Trans. Comput. Educ., vol. 9, no. 2, Jun. 2009, Art. no. 9, doi:
10.1145/1538234.1538236.

[47] J. Sorva, “Visual program simulation in introductory programming
education,” Doctoral thesis, School of Science, Aalto Univ., 2012.
[Online]. Available: https://aaltodoc.aalto.fi/handle/123456789/3534

[48] C. D. Hundhausen et al., “A meta-study of algorithm visualization
effectiveness,” J. Visual Languages & Comput., vol. 13, no. 3, pp. 259–
290, Jun. 2002, doi: 10.1006/jvlc.2002.0237.

[49] C. D. Hundhausen et al., “What you see is what you code: A “live”
algorithm development and visualization environment for novice learn-
ers,” J. Visual Languages & Comput., vol. 18, no. 1, pp. 22–47, Feb.
2007, doi: 10.1016/j.jvlc.2006.03.002.

[50] E. Fouh et al., “The role of visualization in computer science educa-
tion,” Comput. Schools, vol. 29, no. 1-2, pp. 95–117, Apr. 2012, doi:
10.1080/07380569.2012.651422.

[51] J. Maloney et al., “The Scratch programming language and environ-
ment,” ACM Trans. Comput. Educ., vol. 10, no. 4, Nov. 2010, Art. no.
16, doi: 10.1145/1868358.1868363.

[52] Google. (2021) Blockly developers. [Online]. Available: https://
developers.google.com/blockly

[53] P. Henriksen et al., “Greenfoot: Combining object visualisation with in-
teraction,” in Companion 19th Conf. Object-Oriented Programming Sys-
tems, Languages, and Applications (OOPSLA’04), Vancouver, Canada,
Oct. 24–28 2004, pp. 73–82, doi: 10.1145/1028664.10287019.

[54] A. Santos, “AGUIA/J: A tool for interactive experimentation of objects,”
in Proc. 16th ACM Annu. Conf. Innovation and Technology Computer
Science Education (ITICSE’11), Darmstadt, Germany, Jun. 27–29 2011,
pp. 43–47, doi: 10.1145/1999747.1999762.

[55] J. Biggs, “What the student does: Teaching for enhanced learning,”
Higher Educ. Research & Development, vol. 18, no. 1, pp. 57–75, Nov.
1999, doi: 10.1080/0729436990180105.

[56] T. Tanielu et al., “Combining analogies and virtual reality for active
and visual object-oriented programming,” in Proc. ACM Conf. Global
Computing Education (CompEd’19), Chengdu, China, May. 2019, pp.
92–98, doi: 10.1145/3300115.3309513.

[57] C. Heeter et al., “Theories meet realities: Designing a learning game
for girls,” in Proc. 2nd Conf. Designing for User eXperience (DUX’05),
San Francisco, CA, USA, Nov. 3–5 2005.

https://doi.org/10.1145/2157136.2157180
http://dx.doi.org/10.1109/RITA.2017.2735478
https://doi.org/10.1145/1868358.1868361
https://doi.org/10.1109/ICALT.2006.1652599
https://doi.org/10.1007/978-3-540-77934-6
https://doi.org/10.1145/1047344.1047411
https://doi.org/10.1145/960568.782998
https://doi.org/10.1017/CBO9781139048224.009
https://doi.org/10.1002/sce.3730730207
https://doi.org/10.4324/9780203052396-17
https://doi.org/10.3200/SATS.44.2.69-723
https://doi.org/10.1080/01443410.2010.504996
https://doi.org/10.1145/2157136.2157147
https://doi.org/10.1016/j.jal.2008.09.005
https://doi.org/10.1037/0022-0663.76.3.513
https://digitaledu.ac.nz/voopa
https://doi.org/10.1145/1113034.1113040
https://doi.org/10.1080/08993400500224310
https://doi.org/10.1145/1269900.1268834
https://doi.org/10.1145/1352135.1352251
https://doi.org/10.1145/1140123.1140135
https://doi.org/10.4324/9780203053690
https://doi.org/10.1145/1151954.1067473
https://doi.org/10.1145/1352135.1352226
https://doi.org/10.1145/2700519
https://doi.org/10.1145/2325296.2325368
https://doi.org/10.1023/A:1015362608943
https://doi.org/10.1145/1921607.1921611
https://doi.org/10.1145/1316450.1316453
https://doi.org/10.1002/tea.3660290603
https://doi.org/10.1007/978-3-642-55352-3
https://doi.org/10.1080/01638530903420960
https://doi.org/10.1007/BF00118013
https://doi.org/10.1016/S0364-0213(83)80009-3
https://doi.org/10.1039/B3RP90028B
https://doi.org/10.1145/1538234.1538236
https://aaltodoc.aalto.fi/handle/123456789/3534
https://doi.org/10.1006/jvlc.2002.0237
https://doi.org/10.1016/j.jvlc.2006.03.002
https://doi.org/10.1080/07380569.2012.651422
https://doi.org/10.1145/1868358.1868363
https://developers.google.com/blockly
https://developers.google.com/blockly
https://doi.org/10.1145/1028664.1028701
http://dx.doi.org/10.1145/1999747.1999762
https://doi.org/10.1080/0729436990180105
https://doi.org/10.1145/3300115.3309513

15

[58] R. S. Kennedy et al., “Research in visually induced motion sickness,”
Applied Ergonomics, vol. 41, no. 4, pp. 494–503, Jul. 2010, doi:
10.1016/j.apergo.2009.11.006.

APPENDIX
LIST OF KNOWLEDGE QUESTIONS

1. A class is. . .
• A vector/group of instances.
• A vector/group of variables.
• A template for creating instances.
• The same as an instance.

2. One of the purposes of a constructor is to initialize fields of a new instance: True
3. When defining a constructor, an instance is created automatically: False
4. By calling a method, you can change the value of the instance’s fields: True
5. By calling a method, you can add or remove fields of an instance: False
6. Methods are executed according to their order in the class definition: False
7. An instance method must always be called on an instance: True
8. What is the meaning of the keyword this when you use it in a method?

• It refers to the parameters of the method.
• It refers to local variables that are defined in the method.
• It refers to the instance that the method was invoked on.
• It refers to the method itself.

For Questions 9 to 16, refer to the code below:

class Vehicle {
protected:

int fuel;
public:

Vehicle (int fuel);
void fuelUp();
virtual void move();

};
class Car : public Vehicle {

private:
int seats;

public:
Car(float fuel, int seats);
virtual void move();
void addPassenger();

};
// main.cpp
Car *car1 = new Car(30, 5);
Vehicle *car2 = new Car(20, 5);

9. Which constructor(s) will be called when car1 is created?
• Only the Vehicle constructor.
• Only the Car constructor.
• Both the Car and the Vehicle constructors.
• No constructor will be called

10. Which constructor(s) will be called when car2 is created?
• Only the Vehicle constructor.
• Only the Car constructor.
• Both the Car and the Vehicle constructors.
• No constructor will be called.

11. car1->fuelUp() is a valid method call: True
12. car2->fuelUp() is a valid method call: True
13. car1->addPassenger() is a valid method call: True
14. car2->addPassenger() is a valid method call: False
15. Which method(s) will be executed when you call:

car1->move();
car2->move();

• The move() declared in the Vehicle class is executed in both cases.
• The move() declared in the Car class is executed in both cases.
• car1->move() executes move() declared in the Car class, and car2->move() executes

move() declared in the Vehicle class.
• car1->move() executes move() declared in the Vehicle class, and car2->move() executes

move() declared in the Car class.
16. Which field(s) can the move() method defined in the Car class access?

• Only fuel.
• Only seats.
• Both fuel and seats.
• Neither.

For Questions 17 and 18, refer to the code below:

class Vehicle {
private:

Driver *driver;
public:

Vehicle(Driver *driver);
void move();
static void showSafetyHint();

};
class Driver {

private:
int id;
void showLicense();

public:
Driver(int id);
int licenseType;
void printId();

};

17. You are in the move() method, and you wish to call printID():
• Call it by using driver->printID().
• Simply use printID() — the method is transferred automatically.
• You must define a printID() method in the Vehicle class first, then call it.
• You cannot, there is no way to call a method defined in a different class.

18. The private id field declared in Driver can be accessed by:
• The Driver’s constructor only.
• The Driver’s constructor and the private method showLicense() only.
• All the methods and constructors declared in the Driver class.
• The main() function, provided a Driver instance is created there first.

Victor Lian received the B.Eng. (Hons) and M.Eng.
degrees in software engineering from the University
of Auckland, Auckland, New Zealand, in 2019 and
2020, respectively. He is currently working as a
software engineer at MEA Mobile. His interests
include exploring the application of software and
machine learning in education.

Elliot John Varoy received the B.Eng. (Hons) and
M.Eng. degrees in software engineering from the
University of Auckland, Auckland, New Zealand, in
2016 and 2017, respectively. He is currently a doc-
toral student at the University of Auckland focusing
on computing education. His interests include STEM
and computational-thinking education.

Nasser Giacaman received the B.Eng. (Hons) and
Ph.D. degrees from the University of Auckland,
Auckland, New Zealand, in 2006 and 2011, re-
spectively. He is currently a senior lecturer in the
Department of Electrical, Computer, and Software
Engineering at the University of Auckland. His
disciplinary research includes parallel programming,
with current research focusing on digital solutions
across a number of different educational domains.

https://doi.org/10.1016/j.apergo.2009.11.006

	Introduction
	Literature Review
	OOP Concepts, Misconceptions, and Difficulties
	Analogies in Education
	Visualization
	Existing Tools

	Design
	Define Targeted Concepts
	Design Activities
	Develop Visual Analogy
	Instance and Classes
	Inheritance and Polymorphism

	VOOPA Application

	Evaluation
	Methodology
	Results
	Overall knowledge test scores
	Breakdown of individual test questions
	Self-efficacy
	Usability and Engagement
	Qualitative analysis: The good
	Qualitative analysis: The bad

	Discussion
	Learning Gain
	Confidence Gain (Self-Efficacy)
	Usability and Engagement
	Threats to Validity
	Lessons Learned

	Conclusions
	References
	Biographies
	Victor Lian
	Elliot John Varoy
	Nasser Giacaman

